

Universität des Saarlandes Naturwissenschaft-Technische Fakultät II Physik und Mechatronik

PD Dr. M. Deicher, Dr. H. Wolf

Übungen zur Fehlerrechnung (WS 2013/2014)

Datum: 14. Oktober 2013

Abgabe der Lösungen (mit Name und Studienfach) spätestens bis 13. November 2013 im Grundpraktikum. Bitte die Lösungen nicht im Praktikumsheft sondern auf losen gehefteten Blättern abgeben.

Eine Einführung zur Fehlerrechnung und diese Aufgaben finden Sie im Internet unter http://grundpraktikum.physik.uni-saarland.de/WS13.htm

Aufgabe 1:

Gegeben ist die Funktion

$$f(x_1, x_2) = 3 \cdot e^{-\sqrt{x_1}} \cdot \cos^2(x_1 + 3 \cdot x_2)$$

und jeweils 11 Messwerte der Größen x_1 und x_2 , deren Abweichungen von den Mittelwerten \overline{x}_1 und \overline{x}_2 durch zufällige Fehler bedingt sind:

x_1	1,90	1,93	1,85	1,90	1,86	1,92	1,94	1,84	1,86	1,94	1,91
x_2	0,10	0,11	0,10	0,13	0,11	0,09	0,12	0,11	0,14	0,08	0,13

Bestimmen Sie

- a) die Mittelwerte \overline{x}_1 , \overline{x}_2 ,
- b) den Funktionswert $f(\overline{x}_1, \overline{x}_2)$,
- c) die Gaußschen Fehler $\Delta x_1, \Delta x_2$ der Einzelwerte und $\delta x_1, \delta x_2$ der Mittelwerte,
- d) den durch δx_1 und δx_2 bedingten relativen und absoluten Größtfehler von $f(\overline{x}_1, \overline{x}_2)$.

Aufgabe 2:

Die Tabelle enthält die Messwerte z einer Messreihe:

12,4	12,5	12,6	12,4	12,6	12,7	12,3
12,6	12,7	12,6	12,5	12,9	12,5	11,9
12,1	12,0	12,1	12,3	12,6	12,4	12,5
12,2	12,4	11,8	12,1	12,6	12,5	12,2
12,7	12,6	12,0	12,3	12,4	12,3	12,3
12,5	12,5	12,7	12,6	12,3	12,2	12,5
12,3	12,4	12,5	12,5	12,2	12,1	12,4

a) Untersuchen Sie die Verteilung der Messwerte z der Messreihe, indem Sie ein "Histogramm" wie im Beispiel in Abb. 1 zeichnen.

- b) Zeichnen Sie im Histogramm den häufigsten Messwert z_h und den Mittelwert \overline{z} ein und geben Sie die Differenz $\overline{z} z_h$ an.
- c) Berechnen Sie den durchschnittlichen Fehler der Messreihe und zeichnen Sie die Fehlergrenzen im Histogramm ein.

Anmerkung zu 2a): Man zeichnet auf Millimeter-Papier die z-Achse und teilt sie in Intervalle mit der Intervallbreite 0,1 so, dass die Einheiten dieser Dezimalstelle die Intervallmitten z_m bilden. Dann sortiert man die Messwerte nach ihrer Zugehörigkeit zu diesen Intervallen. Fallen Messwerte auf die Grenze zwischen 2 Intervallen, so sollen sie dem auf der z-Achse links gelegenen Intervall zugerechnet werden. Die Intervalle werden also beschrieben durch z_m -0,05 < $z < z_m$ +0,05.

Auf der Ordinate wird die Zahl h_i der Messwerte in den Intervallen aufgetragen. Über dem jeweiligen z-Intervall kennzeichnet man sie durch einen waagerechten Strich. Zeichnet man nun noch die Intervallgrenzen ein, so erhält man eine Treppenkurve in der Form aneinandergesetzter Rechtecke, das Histogramm (Beispiel s. Abb. 1).

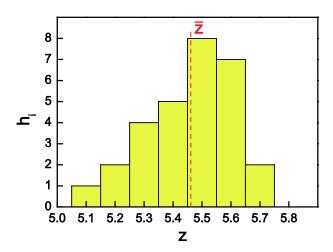


Abbildung 1: Beispiel eines Histogramms

Aufgabe 3:
Gegeben ist eine Reihe von Wertepaaren der Messgrößen x und y:

х	18	42	64	97	124	163	199	210	274	314
у	2,61	2,56	2,25	2,10	1,92	1,79	1,65	1,48	1,36	1,06

- a) Transformieren Sie diese Messpunkte gemäß der Vorschrift $(x \to X = x; y \to Y = \ln y)$ und stellen Sie Y = F(X) graphisch auf Millimeterpapier dar.
- b) Bestimmen Sie die Steigung b und den Ordinatenabstand a der Bestgeraden und geben Sie die Funktionen Y = F(X) und y = f(x) explizit an.
- c) Zeichnen Sie die Streugeraden und bestimmen Sie daraus die Fehler Δa und Δb .
- d) Bestimmen Sie aus Δa und Δb die Fehler in den Konstanten der Funktion y = f(x).
- e) Nennen Sie Beispiele für physikalische Vorgänge, die durch die Gleichung y = f(x) beschrieben werden.
- f) *Optional:* Bestimmen Sie die Steigung *b*, den Ordinatenabstand *a* und deren Fehler durch Anpassung ("Fitten") einer Bestgeraden mit einem Programm wie *Excel* oder *Origin* und vergleichen Sie die Ergebnisse mit b) und c).