

mit Thermoelementen und Widerstandsthermometern

mit Thermoelementen und Widerstandsthermometern

Dipl.-Phys. Matthias Nau

Die Temperatur gehört schon seit Jahrzehnten zu einer der wichtigsten Messgrössen in der Automatisierungs-, Konsum- und Fertigungstechnik. Die elektrische Temperaturmessung mit Widerstandsthermometern und Thermoelementen ist zwar schon über 100 Jahre alt, doch ist die Entwicklung der Messelemente und Thermometer auf die individuelle Messaufgabe noch lange nicht abgeschlossen. Durch immer weitere Optimierung von Prozessen steigen auch die Anforderungen an die Thermometer, um die Temperatur schnell, präzise und auch über lange Zeit reproduzierbar zu messen.

Da es leider nicht ein Thermometer gibt, das alle Messaufgaben in ausreichender Genauigkeit erledigt, ist es gerade für den Anwender umso wichtiger, zunächst die Grundlagen der elektrischen Temperaturmessung zu kennen und die messtechnischen Eigenschaften und Fehlerquellen zu verstehen. Denn ein genaues Thermometer alleine ist kein Garant für eine richtige Erfassung der Messtemperatur. Die angezeigte Temperatur ist nur die Temperatur des Messelementes. Der Anwender muss durch Maßnahmen sicherstellen, dass die Mediumstemperatur auch die Temperatur des Messelementes ist.

Das vorliegende Buch ist schon seit vielen Jahren ein beliebter Leitfaden für den interessierten Anwender. Die überarbeitete Fassung wurde zum einen wegen geänderter Normen und Weiterentwicklungen aktualisiert und überarbeitet. Besonders das neue Kapitel "Messunsicherheit" vermittelt den Grundgedanken des international anerkannten ISO - Leitfadens "Guide to the expression of uncertainty in measurement" (abgekürzt: GUM) und zeigt die Vorgehensweise bei der Ermittlung der Messunsicherheit einer Temperaturmesskette mit ihren Einflussfaktoren. Darüber hinaus wurde auch ein Kapitel zum Explosionsschutz bei Thermometern im Hinblick auf die ab 1.7.2003 gültig werdende europäische Richtlinie 94/9/EG ergänzt.

Im Hinblick auf eine erweiterte Produkthaftung dürfen die aufgeführten Daten und Materialeigenschaften nur als Richtwerte angesehen werden und müssen im Einzelfall überprüft und ggf. korrigiert werden. Dies gilt insbesonders dann, wenn hiervon Aspekte der Sicherheit betroffen sind.

Fulda, im November 2004

Matthias Nau

JUMO GmbH & Co. KG

Moritz-Juchheim-Straße 1 36039 Fulda, Germany

Telefon: +49 661 6003-457
Telefax: +49 661 6003-500
E-Mail: matthias.nau@jumo.net

Internet: www.jumo.net

Nachdruck mit Quellennachweis gestattet!

Teilenummer: 00074750 Buchnummer: FAS 146 Druckdatum: 2007-01

ISBN-13: 978-3-935742-06-1

1	Elektrische Temperaturmessung	. 7
1.1	Berührende Temperaturmessung	7
1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6	Berührungslose Temperaturmessung Gesamtstrahlungspyrometer Spektralpyrometer Bandstrahlpyrometer Strahldichtepyrometer Verteilungspyrometer Verhältnispyrometer	9 9 9 9
2	Der Temperaturbegriff	11
2.1	Die historische Temperaturskala	11
2.2	Die Temperaturfixpunkte	15
2.3	Die Temperaturskala nach ITS-90	15
3	Thermoelemente	17
3.1	Der thermoelektrische Effekt	17
3.2	Thermoelemente	21
3.3	Polarität der Thermospannung	21
3.4	Verhalten bei Bruch und Kurzschluss	22
3.5 3.5.1	Genormte Thermoelemente	
3.5.2	Grenzabweichungen	26
3.5.3 3.5.4	Linearität Langzeitverhalten	
3.6	Auswahlkriterien	
3.6.1	Typ "T" (Cu-CuNi)	
3.6.2 3.6.3	Typ "J" (Fe-CuNi) Typ "E" (NiCr-CuNi)	
3.6.4	Typ "K" (NiCr-Ni)	
3.6.5	Typ "N" (NiCrSi-NiSi)	
3.6.6	Typ "R", "S" und "B"	
3.7 3.7.1	Genormte Ausgleichsleitungen Farbkennzeichnung von Ausgleichsleitungen	
3.8	Anschluss von Thermoelementen	
3.9	Ausführung von Thermoelementen	
3.10	Mantelthermoelemente	
3.11	Fehlersuche	
3.11.1	Mögliche Anschlussfehler und ihre Auswirkungen:	

4	Widerstandsthermometer	43
4.1	Der temperaturabhängige Widerstand	43
4.2 4.2.1 4.2.2 4.2.3	Platinwiderstände Berechnung der Temperatur aus dem Widerstand	43 45 47
4.3 4.3.1	NickelwiderständeGrenzabweichungen	
4.4 4.4.1 4.4.2 4.4.3 4.4.4	Anschluss von Widerstandsthermometern Zweileiter-Technik Dreileiter-Technik Vierleiter-Technik Zweileiter-Messumformer	50 51 51
4.5 4.5.1 4.5.2 4.5.3 4.5.4	Bauformen Keramikwiderstände Glaswiderstände Folienfühler Dünnschichtsensoren	53 53 55
4.6	Langzeitverhalten von Widerstandsthermometern	57
4.7 4.7.1 4.7.2 4.7.3 4.7.4	Fehler bei Widerstandsthermometern Einfluss der Messleitung Mangelnder Isolationswiderstand Eigenerwärmung Parasitäre Thermospannungen	58 58 59
5	Die Übergangsfunktion	61
6	Wärmeableitfehler	65
6.1	Maßnahmen zur Verringerung des Wärmeableitfehlers	67
7	Kalibrierung und Eichung	69
7.1	Kalibrierung	69
7.2	Der Deutsche Kalibrierdienst (DKD)	70
7.3	Eichung	71

8	Armaturen und Schutzrohre	73
8.1 8.1.1	Aufbau elektrischer Thermometer	
8.2	Standardisierte Thermometer und Schutzrohre	75
8.3	Anwendungsbezogene Thermometer	78
8.3.1	Widerstandsthermometer für starke Schwingungen	78
8.3.2 8.3.3	Widerstandsthermometer für die Lebensmittelindustrie	
8.4 8.4.1	Anforderungen an das Schutzrohr	
8.4.2	Schutzrohre für Schmelzen	
8.4.3	Organische Beschichtungen	
8.4.4	Keramische Schutzrohre	
8.4.5 8.4.6	Keramische IsolationswerkstoffeSonderwerkstoffe	
8.5	Einsatzbedingungen der Schutzrohre	
8.5.1	Schutzrohr-Materialien bei Schmelzen	
8.5.2	Beständigkeit gegen Gase	89
9	Explosionsgeschützte Betriebsmittel	91
9.1	Zündschutzarten	93
9.1.1	Zündschutzart Eigensicherheit "i" nach DIN EN 50 020	93
9.1.2	Temperaturfühler und Explosionsschutz	
9.2	Der eigensichere Stromkreis	94
9.3	Zusammenschalten von elektrischen Betriebsmitteln	94
10	Die Messunsicherheit	99
10.1	Der Messprozess	100
10.2	Die naive Sicht: Unsicherheitsintervall	101
10.3	Die GUM-Sicht: Standardmessunsicherheit	102
10.3.1	Die Rechteckverteilung	103
10.3.2	Die Dreiecksverteilung	
10.3.3	Die Normalverteilung	
10.4	Die Bestimmung der Messunsicherheit nach dem GUM	105
4 A E		
10.5	Die industriell-ökonomische Sicht: Erweiterte Messunsicherheit	105

11	Anhang	115
11.1	Übersicht Stahlsorten und ihre verschiedenen Bezeichnungen	115
11.2	Formeln zur Temperaturumrechnung	116
11.3.5 11.3.6 11.3.7 11.3.8 11.3.9	Spannungsreihe der Thermoelemente Eisen-Konstantan (Fe-CuNi) "J" Kupfer-Konstantan (Cu-CuNi) "U" Kupfer-Konstantan (Cu-CuNi) "T" Eisen-Konstantan (Fe-CuNi) "L" Nickel-Chrom-Nickel (NiCr-Ni) "K" Nickel-Chrom-Konstantan (NiCr-CuNi) "E" Nicrosil-Nisil (NiCrSi-NiSi) "N" PlatinRhodium-Platin (Pt10Rh-Pt) "S" PlatinRhodium-Platin (Pt13Rh-Pt) "R"	119 122 123 124 130 136 136
11.4	Grundwerte für den Pt 100	151
11.5	Grundwerte für den Ni 100	154
12	Normen und Literatur	155
12.1	Normen	155
12.2	Literatur	156

Elektrische Temperaturmessung

Die Erfassung der Temperatur ist in zahlreichen Prozessen von überragender Bedeutung. Ca. 45% aller benötigter Messstellen fallen dabei auf die Temperatur. Man denke an Schmelzen, chemische Reaktionen, Lebensmittelverarbeitung, Energiemessung und Klimatisierung. So unterschiedlich die genannten Bereiche sind, so verschieden sind auch die Aufgabenstellungen an die Temperatursensoren, ihre physikalischen Wirkungsprinzipien und technische Ausführung.

In Industrieprozessen ist der Messort vielfach weit vom Ort der Anzeige entfernt, da beispielsweise bei Schmelz- und Glühöfen die Prozessbedingungen dies erfordern oder eine zentrale Messwerterfassung gewünscht ist. Oft ist auch eine weitere Verarbeitung des Messwertes in Reglern oder Registriergeräten gefordert. Hier eignen sich keine direkt anzeigenden Thermometer, wie man sie aus dem Alltag kennt, sondern nur solche, welche die Temperatur in ein anderes, ein elektrisches Signal umformen. Übrigens spricht man auch bei diesen elektrischen Messwertaufnehmern weiterhin von Thermometern, wobei streng genommen immer der Messwertgeber, bestehend aus Sensorelement und die ihn umgebende Schutzarmatur, gemeint ist.

In der industriellen elektrischen Temperaturmessung sind Pyrometer, Widerstandsthermometer und Thermoelemente üblich. Daneben existieren noch Erfassungssysteme wie Schwingquarz-Sensoren und faseroptische Systeme, denen bislang der Einzug in die Industrie jedoch noch nicht gelungen ist.

1.1 Berührende Temperaturmessung

Für Messobjekte, die eine Berührung gestatten, eignen sich neben anderen Messmethoden besonders Thermoelemente und Widerstandsthermometer. Sie werden in sehr großer Stückzahl eingesetzt und beispielsweise für die Messung in Gasen, Flüssigkeiten, Schmelzen, Festkörpern an ihrer Oberfläche und im Innern benutzt. Genauigkeit, Ansprechverhalten, Temperaturbereich und chemische Eigenschaften bestimmen die verwendeten Sensoren und Schutzarmaturen.

Widerstandsthermometer nutzen die Tatsache, dass der elektrische Widerstand eines elektrischen Leiters mit der Temperatur variiert. Es wird zwischen Kalt- und Heißleitern unterschieden. Während bei den erstgenannten der Widerstand mit wachsender Temperatur ansteigt, nimmt er bei den Heißleitern ab.

Zu den Kaltleitern zählen die metallischen Leiter. Als Metalle kommen dabei vorwiegend Platin, Nickel, Iridium, Kupfer und nicht dotiertes Silizium (Spreading Resistance) zum Einsatz. Die weite Verbreitung hat dabei das Platin-Widerstandsthermometer gefunden. Die Vorteile liegen unter anderem in der chemischen Unempfindlichkeit dieses Metalles, was die Gefahr von Verunreinigungen durch Oxidation und andere chemische Einflüsse vermindert.

Platin-Widerstandsthermometer sind die genauesten Sensoren für industrielle Anwendungen und haben auch die beste Langzeitstabilität. Als Richtwert kann für die Genauigkeit beim Platin-Widerstand $\pm 0.5\%$ von der Messtemperatur angegeben werden. Nach einem Jahr kann auf Grund von Alterungen eine Verschiebung um ± 0.05 K auftreten. Ihr Einsatzgebiet sind Temperaturbereiche bis ca. 800° C, wobei das Spektrum der Einsatzmöglichkeiten von der Klimatechnik bis zur chemischen Verfahrenstechnik reicht.

Heißleiter sind Sensoren aus bestimmten Metalloxiden, deren Widerstand mit wachsender Temperatur abnimmt. Man spricht von Heißleitern, da sie erst bei höheren Temperaturen eine gute elektrische Leitfähigkeit besitzen. Da die Temperatur/Widerstandskennlinie fällt, spricht man auch von einem NTC-(Negative Temperature Coefficient-) Widerstand.

Wegen der Natur der zu Grunde liegenden Prozesse nimmt die Zahl der Leitungselektronen mit wachsender Temperatur exponenziell zu, sodass die Kennlinie durch einen stark ansteigenden Verlauf charakterisiert ist.

Diese starke Nichtlinearität ist ein großes Manko der NTC-Widerstände und schränkt die zu erfassenden Temperaturbereiche auf ca. 50 Kelvin ein. Zwar ist eine Linearisierung durch eine Reihenschaltung mit einem rein ohmschen Widerstand von etwa zehnfachem Widerstandswert möglich, Genauigkeit und Linearität genügen jedoch über größere Messspannen meist nicht den Anforderungen. Auch die Drift bei Temperaturwechselbelastungen ist höher als bei den anderen aufgezeigten Verfahren [7]. Wegen des Kennlinienverlaufes sind sie empfindlich gegenüber Eigenerwärmung durch zu hohe Messströme. Ihr Aufgabengebiet liegt in einfachen Überwachungs- und Anzeigeapplikationen, wo Temperaturen bis 200°C auftreten und Genauigkeiten von einigen Kelvin hinreichend sind. In derartig einfachen Anwendungsfällen sind sie allerdings wegen ihres niedrigen Preises und durch die vergleichsweise einfache Folgeelektronik den teureren Thermoelementen und (Metall-)Widerstandsthermometern überlegen. Auch lassen sich sehr kleine Ausführungsformen mit kurzen Ansprechzeiten und geringen thermischen Massen realisieren. Sie werden an dieser Stelle nicht näher behandelt.

Thermoelementen liegt der Effekt zu Grunde, dass sich in einem Draht entlang eines Temperaturgefälles in Abhängigkeit von der elektrischen Leitfähigkeit des Werkstoffes eine Ladungsverschiebung einstellt. Werden zwei Leiter mit verschiedener Leitfähigkeit an einer Stelle in Kontakt gebracht, so kann in Abhängigkeit von der Grösse des Temperaturgefälles durch die unterschiedliche Ladungsverschiebung eine so genannte Thermospannung gemessen werden.

Thermoelemente haben gegenüber Widerstandsthermometern den eindeutigen Vorteil einer höheren Temperatur-Obergrenze von bis zu mehreren tausend Grad Celsius. Ihre Langzeitstabilität ist demgegenüber schlechter, die Messgenauigkeit etwas geringer.

Ein häufiges Einsatzgebiet sind Öfen, Messungen in Schmelzen, Kunststoffmaschinen und anderen Einsatzgebieten oberhalb 250°C.

1.2 Berührungslose Temperaturmessung

In diese Kategorie fallen Objekte, die sich bewegen oder einer Messung nicht zugänglich sind. Hierzu zählen beispielsweise Drehöfen, Papier- oder Folienmaschinen, Walzstraßen, fließende Schmelzen usw. Weiterhin Objekte mit geringer Wärmekapazität und -leitung. Aber auch die Messung eines Objektes in einem Ofen oder über eine größere Entfernung. Dann schließen sich berührende Messungen aus, und man benutzt die vom Messobjekt ausgehende Wärmestrahlung als Messgröße.

Derartige berührungslose Temperaturmessgeräte, die Pyrometer, entsprechen dem prinzipiellen Aufbau nach einem Thermoelement, das über eine Optik die von einem heißen Körper emittierte Wärmestrahlung erfasst. Ist sichergestellt, dass immer das gleiche (gesamte) Bildfeld des Pyrometers vom Messobjekt ausgefüllt wird, kann dieses einfache Messprinzip zur Temperaturerfassung herangezogen werden.

Andere Bauformen arbeiten etwas anders: Sie filtern eine bestimmte Wellenlänge aus der aufgenommenen Strahlung heraus und bestimmen den Anteil dieses Strahlenanteiles an der Gesamtstrahlung. Je höher die Temperatur eines Körpers ist, desto größer wird der Anteil kürzerer Wellenlängen; das von ihm abgestrahlte Licht erscheint immer bläulicher. So ändert sich ja bekanntlich die Farbe eines glühenden Körpers vom anfänglichen Rot immer mehr zur Weißglut, was sich in dem höheren Blauanteil begründet. Pyrometer arbeiten allgemein nicht im sichtbaren Bereich, sondern sind für infrarote Strahlung empfindlich, da die der gemessenen Strahlung entsprechenden Objekttemperaturen zu niedrig sind, um in messbarem Maße sichtbare Wellenlängen auszustrahlen.

Die Strahlung erreicht nach dem Passieren des Spektralfilters eine Thermosäule, das sind mehrere auf einem Halbleiterchip untergebrachte Thermoelemente, die in Reihe geschaltet sind, und führt dort zur Bildung einer Thermospannung, die verstärkt wird und dann als Ausgangssignal zur Verfügung steht. Sie umfasst beispielsweise einen Bereich von 0 ... 20mA für Temperaturen innerhalb

des Messbereiches. Das Signal steht in linearisierter Form an und kann so direkt an einem Messgerät aufgearbeitet werden. Handgeräte besitzen eine integrierte Anzeige. Folgende Bauformen werden unterschieden [16]:

1.2.1 Gesamtstrahlungspyrometer

Ein Pyrometer, dessen spektrale Empfindlichkeit im Spektrum der Temperaturstrahlung nahezu wellenlängenunabhängig ist. Ist das Messobjekt ein schwarzer Strahler, so folgt das Signal des Strahlungsempfängers annähernd dem **Stefan-Boltzmann**'schen-Strahlungsgesetz.

1.2.2 Spektralpyrometer

Ein Pyrometer, das nur in einem engen Bereich des Spektrums der Temperaturstrahlung empfindlich ist. Ist der Messgegenstand ein Schwarzer Strahler, so folgt das Signal des Strahlungsempfängers annähernd dem **Planck**'schen Strahlungsgesetz.

1.2.3 Bandstrahlpyrometer

Ein Pyrometer, das in einem breiten Ausschnitt des Spektrums der Temperaturstrahlung empfindlich ist. Das Signal des Strahlungsempfängers folgt weder dem Stefan-Boltzmann'schen- noch dem Planck'schen Strahlungsgesetz in einer annehmbaren Näherung.

1.2.4 Strahldichtepyrometer

Ein Pyrometer, mit dem die Temperatur aus der Strahldichte unmittelbar oder durch Vergleich mit einem Vergleichsstrahler bekannter Strahldichte bestimmt wird.

1.2.5 Verteilungspyrometer

Ein Pyrometer, mit dem die Temperatur durch Angleich des Farbeindrucks einer aus zwei Spektralbereichen der Temperaturstrahlung des Messgegenstandes zusammengesetzten Mischfarbe an die Mischfarbe eines Vergleichsstrahlers bekannter Strahldichteverteilung bestimmt wird.

1.2.6 Verhältnispyrometer

Ein Pyrometer, mit dem die Temperatur aus dem Verhältnis der Strahldichten in mindestens zwei verschiedenen Bereichen des Spektrums der Temperaturstrahlung des Messgegenstandes bestimmt wird.

Durch das berührungslose Messprinzip lässt sich mit Pyrometern die Temperatur bewegter Objekte einfach und schnell erfassen. Schwierigkeiten kann allerdings die Ermittlung des Emissionsvermögens des Messobjektes bereiten: Die Fähigkeit eines Körpers, Wärme abzustrahlen, hängt von der Beschaffenheit seiner Oberfläche, genauer von seiner Farbe ab. Schwarze Körper strahlen bei Erwärmung mehr Wärme- bzw. Lichtwellen ab als farbige oder weiße. Der Emissionsfaktor des Objektes muss bekannt sein und wird am Pyrometer eingestellt. Für verschiedene Materialien wie Schwarzblech, Papier usw. werden Standardwerte angegeben.

Leider lässt sich die vom Pyrometer angezeigte Temperatur meist nicht mit einer anderen Messmethode überprüfen, sodass es etwas kritisch ist, Absolutwerte zu erhalten. Bei gleich bleibenden Bedingungen, insbesondere was die Oberfläche des Messobjektes betrifft, sind jedoch Vergleichsmessungen innerhalb der für das Instrument angegebenen Genauigkeit möglich.

Bei der Installation der im Äußeren einem Fernrohr nicht unähnlichen Geräte ist zu beachten, dass sich im Gesichtsfeld des Gerätes tatsächlich nur der zu erfassende Gegenstand befindet. Bei spie-

gelnden Oberflächen sind leicht Fehlmessungen durch Fremdstrahlung möglich. Ein Verstauben des Objektives verfälscht das Messergebnis; Abhilfe kann bei unzugänglich angebrachten Sensoren die Installation einer Pressluftdüse sein, mit der abgelagerte Schwebstoffteilchen in Intervallen entfernt werden können. Infrarote Strahlen durchdringen Nebel (Wasserdampf) wesentlich besser als sichtbares Licht, werden jedoch von ihm genauso wie von Kohlendioxid merklich absorbiert. Konstruktiv wählt man den spektralen Empfindlichkeitsbereich daher so, dass er außerhalb der Absorbtionsbanden liegt, sodass Wasserdampf und Kohlendioxid keine Auswirkungen auf das Messergebnis haben. Hohe Staubkonzentrationen, wie sie beispielsweise in Zementwerken auftreten, wirken sich jedoch ungünstig aus. Das Einsatzgebiet pyrometrischer Messverfahren umfasst Temperaturen von 0 ... 3000°C.

10

Der Temperaturbegriff

Wärme ist physikalisch gesehen ein Maß für die einem Körper innewohnende Energie, die er auf Grund der ungeordneten Bewegung seiner Moleküle oder Atome besitzt. So wie ein Tennisball mit wachsender Geschwindigkeit zunehmend Energie besitzt, nimmt die innere Energie eines Körpers oder Gases mit wachsender Temperatur zu. Die Temperatur ist eine Zustandsgröße, die zusammen mit anderen Größen wie der Masse, der Wärmekapazität usw. eines Körpers dessen Energieinhalt beschreibt. Das Maß der Temperatur ist das Kelvin. Bei 0K(elvin) ruhen die Moleküle jedes Körpers und er besitzt keine Wärmeenergie mehr. Daher kann es auch keine negativen Temperaturen geben, denn ein energieärmerer Zustand ist nicht möglich. Da die Messung der inneren kinetischen Energie eines Körpers nicht direkt zugänglich ist, nutzt man zur Temperaturmessung die Auswirkung der Wärme auf bestimmte physikalische Eigenschaften wie zum Beispiel die Längenausdehnung von Metallen oder Flüssigkeiten, der elektrische Widerstand, die Thermospannung, die Schwingungsfrequenz eines Quarzes oder ähnliches. Für eine objektive und genaue Temperaturmessung ist es dabei erforderlich, dass der Effekt stabil und reproduzierbar ist.

2.1 Die historische Temperaturskala

Abbildung 1: Galilei

Abbildung 2: Thermoskop

Da das menschliche Wärmeempfinden nicht sehr zuverlässig zur Temperaturbestimmung ist, suchte bereits 1596 Galilei (Abbildung 1: *Galilei*) nach einer objektiven Methode zur Temperaturmessung. Dabei machte er sich die Ausdehnung von Gasen und Flüssigkeiten bei der Erwärmung zu

2 Der Temperaturbegriff

Nutze. Das sogenannte Thermoskop (Abbildung 2: *Thermoskop*) besteht aus einem luftgefüllten Glaskolben A mit angesetzter Glasröhre B. Diese Röhre taucht mit ihrem offenen Ende in ein mit gefärbtem Wasser gefülltes Vorratsgefäß C.

Erwärmt sich die Luft im Glaskolben, so dehnt sich diese aus und drückt die Wassersäule in der Glasröhre nach unten. Die Höhe des Wasserpegels wird zur Temperaturanzeige herangezogen. Ein Nachteil dieser Konstruktion liegt darin begründet, dass Schwankungen des Luftdruckes die Höhe der Wassersäule beeinflusst. Eine reproduzierbare Temperaturmessung ist nur mit Korrektur des Luftdruckes gegeben.

In der Mitte des 17. Jahrhundert konstruierte die Akademie in Florenz Thermometer. Diese Thermometer waren im Vergleich zu dem Galilei-Thermometer abgeschlossen, so dass der Luftdruck die Temperaturmessung nicht beeinflusste. Als Thermometerflüssigkeit wurde Alkohol verwendet. Die Temperaturskala wurde definiert durch die minimale Winter- und maximale Sommertemperatur. Dabei ist es offensichtlich, dass bei einer erneuten Festlegung/Kalibrierung eines Thermometers eine neue Skala geschaffen wird, da in einem darauf folgenden Jahr sich nicht die gleichen Minimal- und Maximaltemperatur einstellen. Es existierte noch keine allgemein gültige Temperaturskala, die zu jeder Zeit für eine Kalibrierung von Thermometern herangezogen werden konnte.

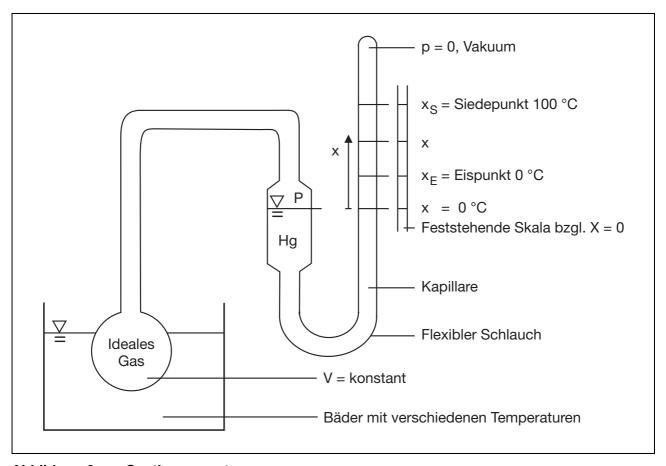
Um 1715 baute der Danziger Glasbläser David **Fahrenheit** Quecksilberthermometer, die in ihrer Anzeige übereinstimmten, was für die damalige Zeit ein großer Fortschritt war. Zusätzlich übernahm er eine Temperaturskala, die später nach ihm benannt wurde und die in Amerika heute noch benutzt wird. Als Nullpunkt seiner Skala wählte er die tiefste Temperatur des strengen Winters von 1709, die er später durch eine bestimmte Mischung aus Eis, festem Salmiak und Wasser wieder herstellen konnte. Mit der Wahl dieses Nullpunktes hoffte Fahrenheit negative Temperaturen vermeiden zu können. Als zweiten "Fixpunkt" seiner Skala soll Fahrenheit seine eigene Körpertemperatur gewählt haben, dem er willkürlich die Zahl 100 zuordnete.

Im Jahr 1742 schlägt der schwedische Astronom Anders **Celsius** vor, die von Fahrenheit eingeführte Skala durch eine besser zu handhabende Skala (die schließlich nach ihm benannt wurde) zu ersetzten. Er wählt zwei Fixpunkte, die überall auf der Welt gut zu reproduzieren sind:

- Die Schmelztemperatur des Eises soll 0°C sein.
- Die Siedetemperatur des Wassers soll 100°C sein.

Den Abstand dieser beiden Marken bei einem Thermometer nennt man Fundamentalabstand. Er wird in 100 gleiche Teile geteilt, einem Teilabschnitt ordnet man die Temperaturdifferenz 1°C zu.

Damit war die Möglichkeit gegeben, beliebige Thermometer jederzeit zu kalibrieren und eine reproduzierbare Temperaturmessung zu gewährleisten. Mit Wechsel der Thermometerflüssigkeit muss das Thermometer neu an den beiden Fixpunkten justiert werden, da sich die temperaturabhängigen Stoffeigenschaften quantitativ unterscheiden und es nach dem Wechsel zu einer Falschanzeige kommt.


Eine physikalisch eindeutige Definition der Temperatur gelang erst im 19. Jahrhundert mit den Hauptsätzen der Thermodynamik, wobei erstmalig keine Stoffeigenschaften bei der Temperaturdefinition verwendet wurden. Grundsätzlich kann diese thermodynamische Temperatur nach allen Messverfahren bestimmt werden, die aus dem zweiten Hauptsatz der Thermodynamik herleitbar sind.

Nach dem Gesetz von **Boyle-Mariotte** ist der Druck bei konstanter Temperatur umgekehrt proportional zum Volumen (p \sim 1/V). Nach dem Gesetz von **Gay-Lussac** steigt der Druck mit der absoluten Temperatur bei konstantem Volumen (p \sim V). Hieraus resultiert die Allgemeine Gasgleichung für ein Mol eines Gases:

Formel 1:

$$p \cdot V_m = R_m \cdot T$$

mit V_m als Molvolumen und R_m als Gaskonstante. Sie gibt einen direkten Zusammenhang über den Druck p, das Volumen V und die Temperatur T eines idealen Gases wieder. Die Temperatur wird also auf die Messung des Druckes eines bekannten Volumens zurückgeführt. Bei diesem Verfahren werden keine materialabhängigen Hilfsgrößen und Umrechnungsfaktoren wie Ausdehnungskoeffizienten, Längendefinitionen usw. benötigt, wie beispielsweise beim Quecksilberthermometer.

Abbildung 3: Gasthermometer

Im Prinzip findet beim Gasthermometer eine Druckmessung statt. Die Messgrösse ist der hydrostatische Druck bzw. die hydrostatische Flüssigkeitssäule x.

Formel 2:

$$p = \rho \cdot g \cdot x$$

Das Volumen V des eingeschlossenen Gases wird durch Heben oder Senken der Kapillare stets konstant gehalten (Marke bei x = 0).

Formel 3:

$$V_{Gas} + V_{Hg} = konstant$$

2 Der Temperaturbegriff

Dann werden die Fixpunkte (x_E = Eispunkt; x_S = Siedepunkt) festgelegt. Der Länge x_S - x_E werden bei der Celsius - Skala 100°C zugeordnet.

Formel 4:

$$t = \frac{x - x_E}{x_S - x_E} \cdot 100 \, ^{\circ}C$$

bzw.

Formel 5:

$$t = \frac{1}{\alpha} \cdot \frac{x - x_E}{x_F} \cdot 100 \, ^{\circ}C$$

mit

Formel 6:

$$\alpha = \frac{x_S - x_B}{x_B \cdot 100 \, ^{\circ}C}$$

Messungen mit verschiedenen "idealen" Gasen und verschiedenen Füllmengen liefern immer:

Formel 7:

$$\alpha = \frac{1}{273,15 \, ^{\circ}\text{C}}$$

Formel 8:

$$t = \frac{x - x_B}{x_B} \cdot 273,15 \, ^{\circ}C$$

für x = 0 folgt t = -273,15 °C bzw. 0K; der absolute Nullpunkt. Der Begriff der absoluten Temperatur geht auf William **Thomson** zurück, der diesen Begriff 1851 einführte. Thomson, der spätere Lord **Kelvin**, führte 1852 eine reproduzierbare Temperaturskala ein, die Thermodynamische Temperaturskala, die unabhängig von der Höhe der Temperatur und von der Stoffeigenschaft ist und sich lediglich auf den 2. Hauptsatz der Thermodynamik stützt. Zur Festlegung dieser Temperaturskala benötigte man noch einen weiteren Fixpunkt, der auf der 10. Generalkonferenz für Maß und Gewicht 1954 als der Tripelpunkt des Wassers festgelegt wurde. Er entspricht einer Temperatur von 273,16 K oder 0,01 °C. Für die Einheit der Thermodynamischen Temperatur gilt die Definition:

1 Kelvin ist der 273,16-te Teil der thermodynamischen Temperatur des Tripelpunkt von Wasser.

In den metrologischen Instituten wird die thermodynamische Temperatur meist mit derartigen Gasthermometern bestimmt. Da diese Messmethode jedoch äußerst aufwändig und schwierig ist, hat man sich bereits 1927 geeinigt, eine praktische Temperaturskala zu schaffen, die möglichst gut die thermodynamische Temperaturskala widerspiegelt.

Die praktische Temperaturskala bezieht sich im Allgemeinen auf ein bestimmtes Messinstrument oder eine beobachtbare Stoffeigenschaft. Der Vorteil einer solchen Definition liegt in einer hohen Reproduzierbarkeit bei vergleichbar geringem technischem Aufwand.

2.2 Die Temperaturfixpunkte

Stoffe besitzen verschiedene Aggregatzustände, sie sind flüssig, fest oder gasförmig. Von der Temperatur hängt es ab, welchen dieser Zustände, die so genannten Phasen, das Material einnimmt. Bei bestimmten Temperaturen existieren zwei oder drei Zustände nebeneinander, beispielsweise Eiswürfel in Wasser von 0°C. Beim Wasser gibt es außerdem eine Temperatur, bei der feste, flüssige und gasförmige Phasen zusammen existieren. Diese so genannte Tripelpunkt-Temperatur beträgt beim Wasser 0,01°C. Bei den meisten anderen Stoffen treten jedoch nur zwei Phasen gleichzeitig auf.

Andere Fixpunkte sind die Erstarrungspunkte reiner Metalle. Kühlt ein geschmolzenes Metall ab, beginnt die Schmelze ab einer bestimmten Temperatur zu erstarren. Die Umwandlung von der flüssigen in die feste Phase verläuft dabei nicht schlagartig, und die Temperatur bleibt so lange konstant, bis alles Metall fest geworden ist. Diese Temperatur wird als Erstarrungstemperatur bezeichnet. Ihr Wert hängt nur vom Reinheitsgrad des Metalles ab, sodass nach dieser Methode auf einfache Art und hochgenau Temperaturen reproduziert werden können.

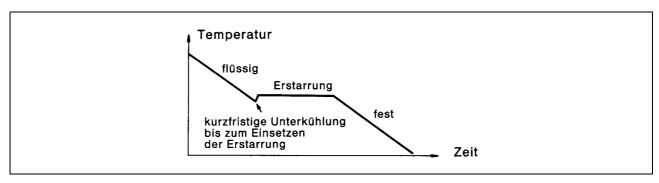


Abbildung 4: Prinzipielle Erstarrungskurve eines Metalls

2.3 Die Temperaturskala nach ITS-90

Die den Fixpunkten entsprechenden Temperaturen werden mit Gasthermometern oder anderen Messgeräten ermittelt, mit denen thermodynamische Temperaturen gemessen werden können. Aus einer Vielzahl von Vergleichsmessungen in den staatlichen Instituten wie der PTB, der Physikalisch-Technischen Bundesanstalt, werden dann die Werte gesetzlich festgeschrieben. Da solche aufwändigen Apparaturen für die industrielle Messtechnik ungeeignet sind, werden nach internationaler Übereinkunft bestimmte Fixpunkte als Primärwerte festgelegt. Für die Zwischenwerte wird die Temperaturskala mit interpolierenden Messgeräten definiert. Damit sind Messgeräte gemeint, welche die Messung nicht nur einer Temperatur zulassen, wie die erwähnten Erstarrungs- und Tripelpunkte, sondern auch aller Zwischenwerte. Das einfachste Beispiel für ein interpolierendes Instrument ist ein Quecksilberthermometer, aber auch ein Gasthermometer zählt dazu.

Bis Ende 1989 hatte die Internationale Praktische Temperaturskala von 1968 Gültigkeit, die IPTS-68. Ab 1990 ist eine neue Skala in Kraft getreten, die Internationale Temperaturskala ITS 90. Die neue Skala wurde notwendig, da eine Vielzahl von Messungen in verschiedenen Laboratorien der Welt Ungenauigkeiten bei der bisherigen Ermittlung der Fixpunkttemperaturen belegten. In der folgenden Tabelle 1: *Fixpunkte der ITS-90 und ihre Abweichungen zur IPTS-68* sind die definierten Fixpunkte der ITS-90 und ihre Abweichungen von der IPTS-68 angegeben.

2 Der Temperaturbegriff

Fixpunkt °C	Stoff	Abweichung zur ITPS-68/K
-218,7916	Sauerstoff	-0,0026
-189,3442	Argon	0,0078
- 38,8344	Quecksilber	0,0016
0,01	Wasser	0,000
29,7646	Gallium	0,0054

Fixpunkt °C	Stoff	Abweichung zur ITPS-68/K
156,5985	Indium	0,0355
231,928	Zinn	0,0401
419,527	Zink	0,0530
660,323	Aluminium	0,1370
961,78	Silber	0,1500

Tabelle 1: Fixpunkte der ITS-90 und ihre Abweichungen zur IPTS-68

Als interpolierendes Thermometer im Bereich von -259 bis 961,78°C ist das Platin-Widerstandsthermometer zugelassen. Damit die Kennlinie dieses Thermometers die thermodynamischen Temperaturen möglichst gut reproduziert, sind in der ITS-90 Forderungen hinsichtlich der Materialreinheit gestellt. Ferner muss das Thermometer an vorgegebenen Fixpunkten kalibriert werden. Aus den Messwerten an den Fixpunkten wird dann zu einer Referenzfunktion eine individuelle Fehlerfunktion des Thermometers bestimmt, mit dessen Hilfe dann beliebige Temperaturen gemessen werden. Temperaturen werden in Verhältnissen des Widerstandes $R(T_{90})$ und dem Widerstand am Tripelpunkt des Wassers R(273,16K) angegeben. Das Verhältnis $W(T_{90})$ ist dann definiert als:

Formel 9:

$$W(T_{90}) = \frac{R(T_{90})}{R(273,16 \text{ K})}$$

Um die Anforderungen der ITS-90 zu erfüllen, muss ein Thermometer aus spektral reinem, spannungsfrei aufgehängtem Platindraht hergestellt sein, dass mindestens folgende Bedingungen erfüllt:

- $W(29,7646^{\circ}C) \ge 1,11807,$
- W(-38.8344°C) \geq 0.844235.

Soll das Thermometer bis zum Silber-Erstarrungspunkt eingesetzt werden, so muss noch folgende Bedingung gelten:

- W(961,78°C) $\geq 4,2844$ °C.

Für einen bestimmten Temperaturbereich gilt eine bestimmte Funktion $W_r(T_{90})$, die sogenannte Referenzfunktionen. Für den Temperaturbereich von 0 ... 961,78°C gilt die Referenzfunktion:

Formel 10:

$$W_r(T_{90}) = C_0 + \sum_{i=1}^{9} C_i \cdot \left[\frac{T_{90}/K - 754,15}{481} \right]^{-1}$$

Für das individuelle Thermometer wird aus den Kalibrierergebnissen an vorgegebenen Fixpunkten die Parameter a, b, c und d der Abweichungsfunktion $W(T_{90})$ - $W_r(T_{90})$ berechnet. Soll das Thermometer zum Beispiel von 0°C bis zum Silber-Erstarrungspunkt (961,78°C) betrieben werden, somuss es an den Fixpunkten Tripelpunkt des Wassers (0,01°C) und den Erstarrungspunkten des Zinns (231,928°C), Zink (419,527°C), Aluminium (660,323°C) und Silber (961,78°C) kalibriert werden. Die Abweichungsfunktion lautet dann:

Formel 11:

$$W(T_{90}) - W_r(T_{90}) = a[W(T_{90}) - 1] + b[W(T_{90}) - 1]^2 + c[W(T_{90}) - 1]^3 + d[W(T_{90}) - W(660,323 \, ^{\circ}C)]^2$$

(Weitere Details zur Umsetzung der ITS 90 sind enthalten in: "Supplementary Information for the ITS-90" (BIPM-1990).)

3.1 Der thermoelektrische Effekt

Das Thermoelement basiert auf dem 1821 von **Seebeck** beschriebenen Effekt, dass ein geringer Strom fließt, wenn zwei metallische Leiter aus unterschiedlichem Werkstoff A und B in Verbindung stehen und entlang der beiden Leiter ein Temperaturunterschied vorliegt. Die beiden miteinander verbundenen Leiter werden als Thermoelement bezeichnet (Thermoelektrischer Effekt).

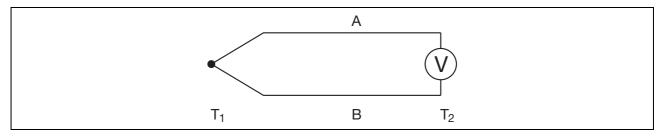


Abbildung 5: Thermoelektrischer Effekt

Die Spannung selbst hängt sowohl von den beiden Materialien als auch dem Temperaturunterschied ab. Um den Seebeck-Effekt verstehen zu können, muss man die Struktur der Metalle und ihren atomaren Aufbau näher betrachten. Ein metallischer Leiter ist durch seine so genannten freien Leitungselektronen ausgezeichnet, die für den Stromfluss verantwortlich sind. Befindet sich ein metallischer Leiter auf gleicher Temperatur, so bewegen sich die Elektronen auf Grund ihrer thermischen Energie innerhalb des Kristallgitters. Nach außen zeigt der Leiter keinen Ladungsschwerpunkt, er ist neutral (Aufbau eines metallischen Leiters).

```
• Atome
• Freie Elektronen
```

Abbildung 6: Aufbau eines metallischen Leiters

Wird der Leiter an der einen Seite erwärmt, so wird den freien Elektronen thermische Energie zugeführt und ihre mittlere Geschwindigkeit erhöht sich gegenüber dem kalten Ende des Leiters. Die Elektronen diffundieren vom erwärmten Ende zum kalten Ende und geben dabei ihre Energie wieder ab; sie werden langsamer (Ladungsverschiebung im metallischen Leiter bei Wärmezufuhr).

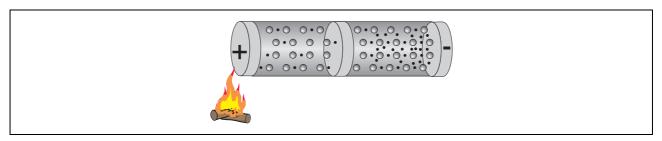


Abbildung 7: Ladungsverschiebung im metallischen Leiter bei Wärmezufuhr

Dies ist auch der Grund für die Wärmeleitung innerhalb eines Metalls. Da sich die Elektronen durch die einseitige Wärmezufuhr verlagern, bildet sich am kalten Ende ein negativer Ladungsschwer-

punkt aus. Andererseits stellt sich zwischen dem positiven Ladungsschwerpunkt am heißen Ende und dem negativen Ladungsschwerpunkt am kalten Ende ein elektrisches Feld ein, dessen Kraft die Elektronen wieder zum warmen Ende hin treibt. Das elektrische Feld baut sich solange auf, bis ein dynamisches Gleichgewicht vorliegt zwischen den Elektronen, die durch den Temperaturgradienten zum kalten Ende getrieben werden und der rücktreibenden Kraft des elektrischen Feldes. Im Gleichgewichtszustand ist die Zahl der Elektronen gleich, die durch eine bestimmte Querschnittsfläche sich in die eine als auch andere Richtung bewegen. Die Geschwindigkeit der Elektronen vom wärmeren Ende ist dabei höher ist als die Geschwindigkeit der entgegengesetzt bewegten Elektronen vom kalten Ende. Diese Geschwindigkeitsdifferenz ist für die Wärmeleitung innerhalb des Leiters verantwortlich ohne einen aktuellen Ladungstransport mit Ausnahme bis zum Einstellen des oben beschriebenen dynamischen Gleichgewichtes.

Soll nun die Spannungsdifferenz zwischen dem warmen und kalten Ende des Leiters gemessen werden, muss zum Beispiel das warme Ende des Leiters mit einem elektrischen Leiter verbunden werden. Dieser Leiter wird ebenfalls dem gleichen Temperaturgefälle ausgesetzt und es bildet sich ebenfalls das gleiche dynamische Gleichgewicht. Ist der zweite Leiter aus dem gleichen Material hergestellt, so liegt ein symmetrischer Aufbau mit gleichen Ladungsschwerpunkten an den beiden offenen Enden vor. Es kann keine Spannungsdifferenz zwischen den beiden Ladungsschwerpunkten gemessen werden. Besteht der zweite Leiter aus einem anderen Werkstoff mit einer anderen elektrischen Leitfähigkeit, so stellt sich auch ein anderes dynamische Gleichgewicht innerhalb des Drahtes ein. Die Folge ist, dass sich an den beiden Enden der Leiter unterschiedliche Landungsschwerpunkte ausbilden, die mit einem Spannungsmessgerät gemessen werden (Der thermoelektrische Effekt).

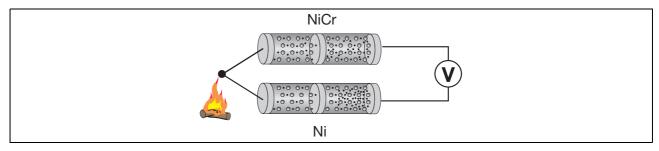


Abbildung 8: Der thermoelektrische Effekt

Ein Problem entsteht bei der Messung der Spannung mit einem Messgerät, dessen Anschlussstellen aus anderem Material bestehen. Es entstehen zwei zusätzliche Thermoelemente. Wenn die Anschussdrähte zum Messgerät aus dem Werkstoff C sind, so bildet sich eine Thermospannung an den Verbindungsstellen A - C und B - C (Thermoelement, angeschlossen über einen zusätzlichen Werkstoff).

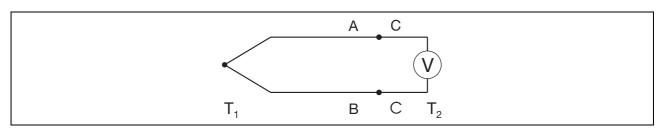


Abbildung 9: Thermoelement, angeschlossen über einen zusätzlichen Werkstoff

Es gibt zwei Lösungsmöglichkeiten, die zusätzliche Thermospannung zu kompensieren:

- Eine Referenzstelle auf bekannter Temperatur,
- Korrektur der Thermoelemente, die sich an den Verbindungen des Messgerätes befinden.

18

Thermoelement mit Vergleichsstelle zeigt das Thermoelement mit der Vergleichsstelle auf konstanter, bekannter Temperatur.

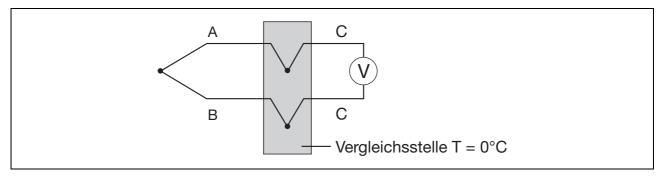


Abbildung 10: Thermoelement mit Vergleichsstelle

Die Spannung der Materialkombination A - C plus der Spannung der Kombination C - B ist die gleiche wie die Spannung der Kombination A - B. Solange alle Verbindungsstellen auf gleicher Temperatur sind, bewirkt der Werkstoff C keinen zusätzlichen Effekt. Hierdurch kann eine Korrektur durchgeführt werden, wenn die Temperatur an den Verbindungsstellen A - C und B - C gemessen wird und die Spannung subtrahiert wird, die für die Kombination A - B bei der gemessenen Temperatur erwartet wird (Vergleichsstellenkompensation). Die Vergleichsstelle wird normalerweise auf 0°C gehalten (z. B. Eisbad), sodass die gemessene Spannung direkt für die Temperaturbestimmung gemäß der Grundwertreihe genutzt werden kann.

Als Messstelle wird jene Verbindungsstelle bezeichnet, die der Messtemperatur ausgesetzt ist. Die Vergleichsstelle ist diejenige Verbindungsstelle, an der eine bekannte Temperatur herrscht. Ein Thermoelement ist stets die Kennzeichnung der gesamten Anordnung, die zur Erzeugung der Thermospannung erforderlich ist; ein Thermopaar sind zwei verbundene, unterschiedliche Leiter; die einzelnen Leiter werden als (Plus- oder Minus-)Thermoschenkel bezeichnet [16].

Die durch den thermoelektrischen Effekt verursachte Spannung ist sehr gering und beträgt nur wenige Mikrovolt pro Kelvin. Thermoelemente werden daher im Allgemeinen nicht zur Messung im Bereich von -30 ... +50°C verwendet, da hier der Unterschied zur Vergleichstellentemperatur zu gering ist, um ein störungssicheres Messsignal zu erhalten. Anwendungsfälle, bei denen die Vergleichsstelle auf eine deutlich höhere oder niedrigere Temperatur - z. B. durch Eintauchen in flüssigen Stickstoff - gebracht wird, sind zwar denkbar, in ihrer Anwendung aber selten.

Es lässt sich übrigens keine "absolute" Thermospannung angeben, sondern immer nur die Differenz der den zwei Temperaturen zugeordneten Thermospannungen. Eine in einer Spannungsreihe angegebene "Thermospannung bei 200°C" (oder einer anderen Temperatur) bedeutet immer "... im Unterschied zur Thermospannung bei 0°C" und setzt sich wie folgt zusammen:

Formel 12:

$$U(200 \, {}^{\circ}C) = U_{th}^{A}(200 \, {}^{\circ}C) - U_{th}^{B}(200 \, {}^{\circ}C)$$

Die tatsächlichen Thermospannungen in den einzelnen Leitern der Materialien A und B sind demnach erheblich höher, für eine direkte Messung jedoch nicht zugänglich.

Ein Thermoelement bildet sich immer dort, wo zwei unterschiedliche Metalle miteinander verbunden sind. Also auch dort, wo die Metalle des Thermoelementes beispielsweise mit einer Kupferleitung verbunden sind, um die Thermospannung an einem anderen Ort anzuzeigen.

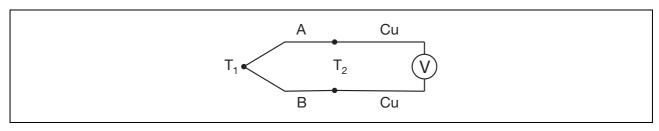
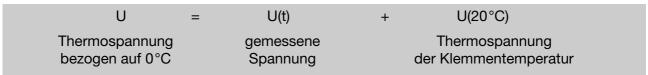


Abbildung 11: Thermoelement mit Vergleichsstelle auf Temperatur T₂

Da hier die Vorzeichen der entstehenden Thermospannungen umgekehrt sind (Übergang Werkstoff A -Kupfer / Werkstoff B), ist nur der Unterschied der Thermospannungen zwischen Werkstoff B und Werkstoff A von Bedeutung. Mit anderen Worten: Das Material der Anschlussleitung ist für die im Kreis herrschende Thermospannung ohne Bedeutung. Man kann sich die zweite Verbindungsstelle am Anschlusspunkt entstanden denken. Wichtig dagegen ist die Temperatur, die an der Verbindungsstelle mit den Kupferleitungen (oder Anschlussleitung aus einem anderen Material) herrscht. Man spricht in diesem Zusammenhang auch von Klemmentemperatur, da hier das Thermoelement und die Anschlussleitung zusammengeklemmt sind.


Ist die Klemmentemperatur bekannt, kann von der gemessenen Thermospannung direkt auf die Messtemperatur an der Verbindungsstelle der Thermodrähte geschlossen werden: Die durch die Klemmentemperatur erzeugte Thermospannung wird zu der gemessenen Spannung addiert und entspricht somit der Thermospannung bezüglich einer Referenz von 0°C.

Beispiel:

Die Temperatur der Messstelle beträgt 200°C, die Klemmentemperatur 20°C, gemessene Thermospannung 9mV. Dieses entspräche 180°C Temperaturdifferenz. Da die Temperatur aber ge-meinhin auf 0°C bezogen wird, muss der Wert um 20°C nach oben korrigiert werden.

Folgender Gedankenversuch macht dies deutlich: Würde die Vergleichsstelle - in diesem Fall die Klemmen - tatsächlich auf 0°C abgesenkt werden, erhöhte sich die Gesamtspannung um den Betrag, der einer Temperaturdifferenz von 20°C entspricht. Die auf 0°C bezogene Thermospannung ist demnach:

Formel 13:

20 JUMO, FAS 146, Ausgabe 2007-01

Ein industrielles Thermoelement besteht aus einem Thermopaar, das zur Messung herangezogen wird. Als Referenz dient immer die Klemmentemperatur. Variiert diese Klemmentemperatur, weil die Verbindungsstelle - beispielsweise im Anschlusskopf des Thermoelementes - einer wechselnden Umgebungstemperatur ausgesetzt ist, würde dies zu Fehlmessungen führen. Dagegen können folgende Maßnahmen getroffen werden:

Die Klemmentemperatur wird gemessen oder auf bekannter Temperatur konstant gehalten. Ihr Wert kann beispielsweise durch einen im Fühlerkopf eingebauten Temperatursensor ermittelt und dann als externe Vergleichsstellentemperatur zur Korrektur herangezogen werden. Alternativ hierzu werden in einem so genannten Vergleichsstellenthermostat, der elektrisch beheizt im Innern eine konstante Temperatur (meist 50°C) besitzt, Thermomaterial und Anschlussleitung verbunden. Diese Temperatur wird als Vergleichsstellentemperatur eingesetzt. Der Einsatz derartiger Vergleichsstellenthermostate ist jedoch selten und lohnt sich nur dann, wenn die Signale mehrerer Elemente von einem Ort über größere Entfernung übertragen werden müssten. Sie werden dann bis zum Vergleichsstellenthermostat mit Ausgleichsleitung (Thermoelement-Messkreis mit Ausgleichsleitung) verdrahtet, die restliche Übertragung erfolgt mit herkömmlicher Kupferleitung.

Im Anschlusskopf wird keine Anschlussleitung aus Kupfer, sondern einem Material mit den gleichen thermoelektrischen Eigenschaften wie dem Thermoelement selbst angeschlossen. Diese Ausgleichsleitung ist aus dem gleichen Material bzw. aus Kostengründen aus einem anderen Material mit jedoch gleichen thermoelektrischen Eigenschaften. An der Verbindungsstelle zum Thermoelement entsteht daher keine Thermospannung. Diese bildet sich erst dort, wo die Ausgleichsleitung wieder an normale Kupferleitung geklemmt wird, beispielsweise an den Anschlussklemmen des Gerätes. Hier befindet sich dann ein Temperaturfühler, der diese interne Vergleichsstelle misst und berücksichtigt. Diese Methode ist die verbreitetste.

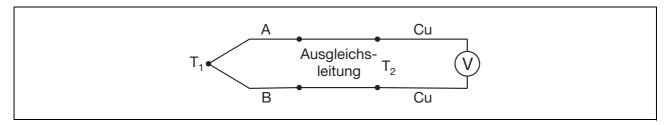


Abbildung 12: Thermoelement-Messkreis mit Ausgleichsleitung

Es dürfen immer nur Ausgleichsleitungen aus dem gleichen Material wie das Element selbst (bzw. mit den gleichen thermoelektrischen Eigenschaften) eingesetzt werden, da ansonsten an der Verbindungsstelle ein neues Element entsteht. Dort, wo die Ausgleichsleitung mit einem anderen Material verbunden wird, entsteht die Vergleichsstelle; eine Verlängerung mit Kupferleitung oder Ausgleichsleitung anderen Typs ist nicht möglich.

3.3 Polarität der Thermospannung

Das Metall, bei dem die (Valenz-)Elektronen weniger stark gebunden sind, wird diese leichter abgeben als ein Metall mit festerer Bindung, es ist also im Vergleich zu ihm thermoelektrisch negativ. Die Stromrichtung wird außerdem aber noch von der Temperatur der beiden Verbindungsstellen beeinflusst. Dies wird leicht ersichtlich, wenn man sich den Thermokreis als zwei Batterien vorstellt, von denen jeweils die mit der höheren Temperatur die größere Spannung abgibt. Die Stromrichtung wird demnach davon abhängen, auf welcher Seite im Kreis die höhere Spannung herrscht. Die Polaritätsangaben bei Thermopaaren beziehen sich stets darauf, dass an der Messstelle eine höhere Temperatur als der Vergleichsstelle (Klemmen- bzw. Vergleichsstellentemperatur) herrscht.

JUMO, FAS 146, Ausgabe 2007-01 21

3.4 Verhalten bei Bruch und Kurzschluss

Ein Thermoelement liefert keine Spannung, wenn die Messtemperatur gleich der Vergleichsstellentemperatur ist. Dies bedeutet, dass die Ruhelage des angeschlossenen Anzeigeinstrumentes nicht bei 0°C, sondern bei der Vergleichsstellentemperatur liegen muss. Wird ein Thermoelement abgeklemmt, geht die Anzeige - sofern keine besondere Fühlerbruchmeldung erfolgt - daher nicht auf Null zurück, sondern auf die am Gerät eingestellte Temperatur der Vergleichsstelle.

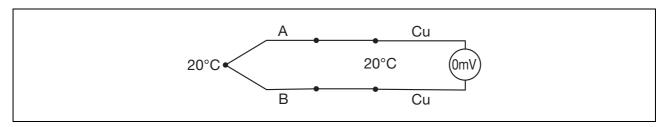


Abbildung 13: Thermoelement auf gleicher Temperatur wie Vergleichsstelle

Wird ein Thermoelement bzw. die Ausgleichsleitung kurzgeschlossen, so entsteht die neue Messstelle am Ort des Kurzschlusses. Tritt ein derartiger Kurzschluss beispielsweise im Anschlusskopf auf, so wird nicht mehr die Temperatur der eigentlichen Messstelle angezeigt, sondern die des Anschlusskopfes. Liegt diese in der Nähe der tatsächlichen Messtemperatur kann es sein, dass der Fehler zunächst gar nicht bemerkt wird.

Derartige Kurzschlüsse können durch die einzelnen Adern der Anschlussleitung entstehen, die nicht von der Anschlussklemme erfasst wurden und eine Brücke zur zweiten Anschlussklemme bilden.

Thermoelemente werden bei hohen Temperaturen mit der Zeit zunehmend brüchig, da in Folge der Rekristallisation die Korngröße im Metall wächst. Die meisten elektrischen Geräte für den Anschluss von Thermoelementen verfügen daher über Eingangsschaltungen, die einen Thermoelementbruch registrieren und melden. Ein Fühlerkurzschluss kann nach dem oben Gesagten nicht so einfach erfasst werden, ist allerdings auch erheblich seltener.

22

3.5 Genormte Thermoelemente

Unter der Vielzahl möglicher Metallkombinationen wurden bestimmte ausgewählt und in ihren Eigenschaften genormt, insbesondere der Spannungsreihe und den zulässigen Grenzabweichungen. Die folgenden Elemente sind hinsichtlich der Thermospannung und deren Toleranz sowohl weltweit (IEC) genormt als auch europäisch bzw. national genormt.

DIN IEC 584-1, DIN EN 60584-1

Eisen-Konstantan(Fe-CuNi)	Kennbuchstabe	"J"
Kupfer-Konstantan (Cu-CuNi)	Kennbuchstabe	"T"
Nickelchrom-Nickel (NiCr-Ni)	Kennbuchstabe	"K"
Nickelchrom-Konstantan (NiCr-CuNi)	Kennbuchstabe	"E"
Nicrosil-Nisil (NiCrSi-NiSi)	Kennbuchstabe	"N"
PlatinRhodium-Platin (Pt10Rh-Pt)	Kennbuchstabe	"S"
PlatinRhodium-Platin (Pt13Rh-Pt)	Kennbuchstabe	"R"
PlatinRhodium-Platin (Pt30Rh-Pt6Rh)	Kennbuchstabe	"B"

DIN 43710 (nicht mehr gültig)

Eisen-Konstantan (Fe-CuNi) Kennbuchstabe "L" Kupfer-Konstantan (Cu-CuNi) Kennbuchstabe "U"

Es handelt sich dabei um technisch reines Eisen und eine CuNi-Legierung mit 45 - 60 Gewichtsprozent Kupfer sowie Legierungen von reinem Platin und Rhodium in den angegebenen Zusammensetzungen; die anderen Legierungen sind noch nicht festgelegt. Für das Nickelchrom-Nickel-Element finden sich vielfach auch das Kürzel NiCr-NiAl sowie die Bezeichnung als "Chromel-Alumel", da dem Nickelschenkel Aluminium zugesetzt ist, das durch eine Al₂O₃-Schicht das Nickel schützt. Neben diesem Element existiert noch das Nicrosil-Nisil-Element (NiCrSi-NiSi), Typ "N". Es unterscheidet sich vom Nickelchrom-Nickel-Element durch einen höheren Chromanteil im positiven Schenkel (14,2 % statt 10 %) und einem Silizium-Bestandteil in beiden Schenkeln. Dadurch bildet sich an seiner Oberfläche eine Siliziumdioxid-Schicht, die das Element schützt. Seine Thermospannung ist um ca. 10 % geringer als die des Typ "E" und bis 1300 Grad definiert.

Zu beachten ist hierbei, dass zwei Thermoelemente vom Typ Fe-CuNi (Typ L und J) und Cu-CuNi (Typ U und T) genormt sind, was historisch begründet ist. Die "alten" Elemente U und L treten inzwischen jedoch gegenüber den Elementen J und T nach DIN EN 60 584 in den Hintergrund. Die jeweiligen Elemente sind auf Grund unterschiedlicher Legierung nicht kompatibel; wird ein Fe-CuNi-Element vom Typ L an eine Linearisierung gemäß der Kennlinie vom Typ J angeschlossen, entstehen auf Grund der verschiedenen Kennlinien Fehler von mehreren Kelvin. Gleiches gilt für die Elemente vom Typ U und T.

JUMO, FAS 146, Ausgabe 2007-01 23

Für Thermopaare und Ausgleichsleitungen sind Farbcodes festgelegt. Zu beachten ist, dass trotz international festgelegter Farbcodes immer noch einige national definierte anzutreffen sind und leicht zu Verwechslung führen können.

Land		Internat.	U	SA	England	Deutschland	Japan	Frankreich
Тур	Norm	IEC 584	ANSI MC96.1 (Thermopaar)	ANSI MC96.1 (Ausgleichs- leitung)	BS1843	DIN 43714	JIS C1610- 1981	NF C42-323
J	Mantel Plus-Pol Minus-Pol	Schwarz Schwarz Weiß	Braun Weiß Rot	Schwarz Weiß Rot	Schwarz Gelb Blau	Typ L Blau Rot Blau	Gelb Rot Weiß	Schwarz Gelb Schwarz
K	Mantel Plus-Pol Minus-Pol	Grün Grün Weiß	Braun Gelb Rot	Gelb Gelb Rot	Rot Braun Blau	Grün Rot Braun	Blau Rot Weiß	Gelb Gelb Purpur
E	Mantel Plus-Pol Minus-Pol	Violett Violett Weiß	Braun Purpur Rot	Purpur Purpur Rot	Braun Braun Blau	Schwarz Rot Schwarz	Purpur Rot Weiß	
Т	Mantel Plus-Pol Minus-Pol	Braun Braun Weiß	Braun Blau Rot	Grün Schwarz Rot	Blau Weiß Blau	Typ U Braun Rot Braun	Braun Rot Weiß	Blau Gelb Blau
R	Mantel Plus-Pol Minus-Pol	Orange Orange Weiß		Grün Schwarz Rot	Grün Weiß Blau		Schwarz Rot Weiß	
S	Mantel Plus-Pol Minus-Pol	Orange Orange Weiß		Grün Schwarz Rot	Grün Weiß Blau	Weiß Rot Weiß	Schwarz Rot Weiß	Grün Gelb Grün
В	Mantel Plus-Pol Minus-Pol	Grau Grau Weiß		Grau Grau Rot		Grau Rot Grau	Grau Rot Weiß	
N	Mantel Plus-Pol Minus-Pol	Rosa Rosa Weiß	Braun Orange Rot	Orange Orange Rot				

Tabelle 2: Farbcodes für Thermopaare und Ausgleichsleitungen

Sollten die Thermodrähte nicht gekennzeichnet sein, so können folgende Unterscheidungsmerkmale hilfreich sein:

Fe-CuNi: Plusschenkel ist magnetisch
Cu-CuNi: Plusschenkel ist kupferfarben
NiCr-Ni: Minusschenkel ist magnetisch
PtRh-Pt: Minusschenkel ist weicher

Die Grenztemperaturen sind ebenfalls in der Norm festgelegt. Es wird unterschieden:

- die Maximaltemperatur,
- die Definitionstemperatur.

Unter der Maximaltemperatur ist derjenige Wert gemeint, bis zu dem eine Grenzabweichung festgelegt ist (Kapitel 3.5.2 "Grenzabweichungen"). Unter "definiert bis" ist die Temperatur angegeben, bis zu der die Thermospannung genormt ist (vergleiche Thermoelemente nach DIN EN 60 584).

Norm	Element		Maximaltemperatur	definiert bis
	Fe-CuNi	J	750°C	1200°C
	Cu-CuNi	T	350°C	400°C
	NiCr-Ni	K	1200°C	1370°C
DIN EN 60 584	NiCr-CuNi	Е	900°C	1000°C
DIN EN 60 364	NiCrSi-NiSi	N	1200°C	1300°C
	Pt10Rh-Pt	S	1600°C	1540°C
	Pt13Rh-Pt	R	1600°C	1760°C
	Pt30Rh-Pt6Rh	В	1700°C	1820°C

Tabelle 3: Thermoelemente nach DIN EN 60 584

3.5.1 Spannungsreihen

Ganz allgemein lässt sich sagen, dass die Thermospannung umso höher ist, je unterschiedlicher die Metalle beider Schenkel sind. Die höchste elektromotorische Kraft besitzt von allen genannten Elementen das NiCr-CuNi-Element. Dagegen haben die Platinelemente, deren Schenkel sich nur durch den Rhodium-Legierungsanteil unterscheiden, die geringste EMK. Neben den höheren Kosten ist dies ein Nachteil der edlen Thermoelemente.

Die nach Norm angegebenen Spannungsreihen sind nach 2- bis 4-stelligen Polynomen berechnet, die in der DIN EN 60 584, Teil 1, im Anhang angegeben sind. Sie beziehen sich sämtlich auf eine Bezugstemperatur von 0°C. Meist ist die tatsächliche Vergleichsstellentemperatur jedoch hiervon verschieden. Die der Messtemperatur zugehörige Spannung muss dann um diese Spannung korrigiert werden:

Beispiel:

Element Fe-CuNi, Typ "J", Messtemperatur 300°C, Vergleichsstellentemperatur 20°C

Thermospannung bei 300°C: 16,325 mV Thermospannung bei 20°C: 1,019 mV Resultierende Thermospannung: 15,305 mV

Wegen der Nichtlinearität der Spannung wäre es falsch, zunächst die der gemessenen Thermospannung zugehörige Temperatur zu ermitteln und von dieser danach die Vergleichsstellentemperatur abzuziehen. Stets muss von der Thermospannung zuerst die der Vergleichsstellentemperatur zugeordnete Spannung subtrahiert werden. Die Korrektur um die an der Vergleichstelle erzeugte Thermospannung wird im Allgemeinen vom angeschlossenen Gerät durch eine entsprechende Elektronik automatisch durchgeführt.

JUMO, FAS 146, Ausgabe 2007-01 25

3.5.2 Grenzabweichungen

Für die Thermoelemente nach DIN EN 60 584 sind drei Toleranzklassen definiert. Sie gelten für Thermodrähte mit Durchmessern von 0,25 bis 3mm Durchmesser und betreffen den Auslieferungszustand. Sie können keine Aussage über eine mögliche spätere Alterung treffen, da diese sehr stark von den Einsatzbedingungen abhängt. Die für die Toleranzklassen festgelegten Temperaturgrenzen sind nicht notwendigerweise die empfohlenen Grenzen der Anwendungstemperatur; in den Spannungsreihen werden die Thermospannungen für erheblich weitere Temperaturbereiche angegeben. Außerhalb dieser Temperaturgrenzen sind jedoch keine Grenzabweichungen definiert (vergleiche Farbcodes für Thermopaare und Ausgleichsleitungen).

Fe-CuNi (J)	Klasse 1	- 40+ 750°C	±0,004 · t	oder	±1,5°C
	Klasse 2	- 40 + 750°C	±0,0075 · t	oder	±2,5°C
	Klasse 3				
Cu-CuNi (T)	Klasse 1	0 350°C	±0,004 · t	oder	±0,5°C
	Klasse 2	- 40 + 350°C	±0,0075 · t	oder	±1,0°C
	Klasse 3	-200 + 40 °C	±0,015 · t	oder	±1,0°C
NiCr-Ni (K)	Klasse 1	- 40 +1000°C	±0,004 · t	oder	±1,5°C
und NiCrSi-NiSi (N)	Klasse 2	- 40 +1200°C	±0,0075 · t	oder	±2,5°C
	Klasse 3	-200 + 40°C	±0,015 · t	oder	±2,5°C
NiCr-CuNi (E)	Klasse 1	- 40+ 900°C	±0,004 · t	oder	±1,5°C
	Klasse 2	- 40 + 900°C	±0,0075 · t	oder	±2,5°C
	Klasse 3	-200 + 40°C	±0,015 · t	oder	±2,5°C
Pt10Rh-Pt (S)	Klasse 1	0 1600°C	±[1 + 0,003 · (t-1100°C)]	oder	±1,0°C
und Pt13Rh-Pt (R)	Klasse 2	0 1600°C	±0,0025 · t	oder	±1,5°C
	Klasse 3				
Pt30Rh-Pt6Rh (B)	Klasse 1	600 1700°C	±0,0025 · t	oder	±1,5°C
	Klasse 2	600 1700°C	±0,005 · t	oder	±4,0°C
	Klasse 3				

Tabelle 4: Grenzabweichungen für Thermoelemente nach DIN EN 60 584

Cu-CuNi (U)	0 600°C	±0,0075 · t	oder ±3,0°C
Fe-CuNi (L)	0 900°C	±0,0075 · t	oder ±3,0°C

Tabelle 5: Grenzabweichungen für Thermoelemente nach DIN 43 710

NiCr-CuNi (E)	Standard	0 900°C	±0,005 · t	oder ±1,7°C
	Sonder	0 900°C	±0,004 · t	oder ±1,0°C
Fe-CuNi (J)	Standard	0 750°C	±0,0075 · t	oder ±2,2°C
	Sonder	0 750°C	±0,004 · t	oder ±1,1°C
NiCr-Ni (K)	Standard	0 1250°C	±0,0075 · t	oder ±2,2°C
	Sonder	0 1250°C	±0,004 · t	oder ±1,1°C
Cu-CuNi (T)	Standard	0 350°C	±0,0075 · t	oder ±1,0°C
	Sonder	0 350°C	±0,004 · t	oder ±0,5°C
Pt10Rh-Pt (S)	Standard	0 1450°C	±0,0025 · t	oder ±1,7°C
und Pt13Rh-Pt (R)	Sonder	0 1450°C	±0,001 · t	oder ±0,6°C

Tabelle 6: Grenzabweichungen für Thermoelemente nach ANSI MC96.1 1982

Es gilt dabei der jeweils größte Wert.

Beispiel:

Element Fe-CuNi "J", Klasse 2, Messtemperatur 200°C, Vergleichsstellentemperatur 0°C, Toleranz laut DIN EN 60 584: 2,5°C oder 0,0075 \cdot t = 2,5°C oder 0,0075 \cdot 200°C = 2,5°C oder 1,5°C.

Es muss daher von einer Messunsicherheit von $\pm 2,5\,^{\circ}$ C ausgegangen werden. Selbstverständlich ist dies die maximal zulässige Toleranz, die tatsächliche Abweichung wird in den meisten Fällen darunter liegen.



Abbildung 14: Grenzabweichungen Klasse 2 nach DIN EN 60 584

Eine derartige Toleranz bedeutet: Gibt ein derartiges Thermoelement eine Spannung ab, die einer Temperaturdifferenz von 200°C zwischen Mess- und Vergleichsstelle entspricht, kann die tatsächliche Temperaturdifferenz zwischen 197,5 und 202,5°C liegen.

3.5.3 Linearität

Die von einem Thermoelement abgegebene Spannung ist zur Temperatur nicht linear und muss daher von der Folgeelektronik in speziellen Eingangsschaltungen linearisiert werden, wozu bei digital arbeitenden Geräten Linearisierungstabellen einprogrammiert sind, oder vom Anwender Stützpunkte eingegeben werden müssen. Bei Zeigerinstrumenten finden sich vielfach auch nichtlineare Skalenteilungen. Die Kennlinien der Thermopaare nach Norm sind durch die Spannungsreihen so festgelegt, dass vollständige Austauschbarkeit besteht. Dies bedeutet, dass ein Eisen-Konstantan-Thermoelement vom Typ "K" beispielsweise durch jedes andere Element dieses Typs unabhängig vom Hersteller ausgetauscht werden kann, ohne dass eine Neukalibrierung der angeschlossenen Geräte erforderlich wäre.

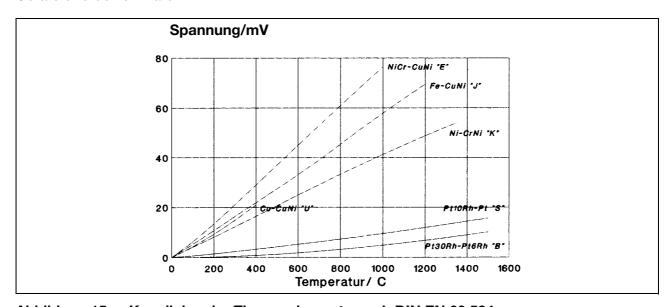


Abbildung 15: Kennlinien der Thermoelemente nach DIN EN 60 584

3.5.4 Langzeitverhalten

Die maximale Einsatz-Temperatur der Materialien wird im Wesentlichen von ihrer Oxidierbarkeit und Alterung bei höheren Temperaturen bestimmt. Neben den preiswerten "unedlen" Elementen aus Kupfer, Nickel und Eisen stehen für den Temperaturbereich oberhalb ca. 800°C platinhaltige "edle" Elemente zur Verfügung, deren Maximaltemperatur bis 1800°C reicht.

Der Plusschenkel der Thermoelemente Typ "K" oder "E" und Minusschenkel der Typen "J", "T" oder "E" zeigen im Temperaturbereich von 250°C bis 650°C eine reversible Kristallstrukturänderung, die einen Anzeigefehler von ca. 5K hervorruft.

Daneben existieren noch verschiedene andere Metallkombinationen, darunter auch solche mit Metallkarbiden, die hauptsächlich für extreme Hoch- oder Tieftemperaturbereiche bestimmt sind. Ihre Kennlinien sind nicht genormt.

Die Beständigkeit der Thermoelemente gegenüber oxidierenden und reduzierenden Atmosphären ist meist jedoch von untergeordneter Bedeutung, da sie nahezu ausschließlich in gasdichten Schutzrohren eingebaut und hierin hermetisch dicht eingebettet sind.

Ungeschützte Thermoelemente, bei denen die Thermodrähte frei im Ofenraum hängen, finden eigentlich nur oberhalb 1000°C Anwendung, da dann der Isolationswiderstand selbst keramischer Materialien zu gering wird. Beim Einsatz derartig ungeschützter Elemente, die von den aufgeführten nur noch solche aus Platin sein dürfen, sind allerdings zahlreiche Faktoren zu beachten, die zur vorzeitigen Alterung mitunter innerhalb weniger Stunden führen können.

Besonders Silizium, das oftmals in den Heizelementen bzw. deren Isolierung enthalten ist und besonders bei der ersten Inbetriebnahme verstärkt freigesetzt wird, diffundiert leicht in die Thermodrähte ein und vergiftet sie. Wasserstoff lässt sie verspröden, weshalb sie ohne Schutzrohr nur in oxidierenden Atmosphären eingesetzt werden dürfen. (Für reduzierende Atmosphären oberhalb 1000°C werden beispielsweise Wolfram-Rhenium-Elemente eingesetzt, die allerdings keinen Sauerstoff vertragen.) Da inzwischen Keramiken mit Hitzebeständigkeiten bis 1800°C erhältlich sind, sollte daher von ungeschützten Thermoelementen nach Möglichkeit abgesehen und immer ein gasdichtes Schutzrohr verwendet werden.

Ein weiteres ausgesprochenes Hochtemperatur-Thermoelement ist das Molybdän-Rhenium-Element. Es ist mechanisch stabiler als das Wolfram-Rhenium-Element und wie dieses nur in reduzierender Atmosphäre oder im Hochvakuum einsetzbar. Die Maximaltemperatur liegt bei ca. 2000°C, wird jedoch durch die verwendeten Isolationsmaterialien meist beschränkt. Es gibt für dieses Element keine Ausgleichsleitung. Daher wird der Anschlusskopf gekühlt und seine Temperatur als Vergleichsstellentemperatur herangezogen. Sofern dieses Thermoelement nicht freihängend angebracht ist und sich in einer Schutzarmatur befindet, muss diese wegen der Empfindlichkeit gegenüber Sauerstoff evakuiert oder mit Schutzgas gespült sein.

Für die Temperaturbeständigkeit eines Elementes ist die Alterung der Materialien von großer Bedeutung. Mit zunehmender Annäherung an den Schmelzpunkt nimmt die Diffusionsgeschwindigkeit der Atome in einem Metall zu. Daher wandern dann sehr leicht Fremdatome in das Thermoelement ein, beispielsweise aus dem Schutzrohrmaterial. Da dabei die beiden Thermoschenkel mit den gleichen Fremdatomen legiert werden, nähern sich ihre thermoelektrischen Eigenschaften, und die Thermospannung nimmt ab. Daher sollten für Temperaturmessungen oberhalb 800°C nur Platin-Thermoelemente angewendet werden, sofern eine Langzeitstabilität von wenigen Kelvin gefordert ist.

Reines Platin zeigt eine große Affinität zur Aufnahme von Fremdatomen. Daher nimmt die Langzeitstabilität der Platin-Rhodium-Elemente mit wachsendem Rhodium-Anteil zu. Das Pt13Rh-Pt-Element ist um rund das Doppelte langzeitstabiler als das Pt10Rh-Pt-Element [1]. Es liefert zudem noch eine höhere Thermospannung. Noch langzeitstabiler ist das Pt30Rh-R6Rh-Element, das jedoch eine um fast die Hälfte geringere Thermokraft besitzt.

Das Phänomen der Alterung im Hochtemperaturbereich muss unbedingt berücksichtigt werden, sowohl bei der Auswahl der Elemente als auch deren Handhabung. Ein Beispiel aus der Praxis zeigt, dass in Härtereiöfen bei ca. 950°C Thermoelemente vom Typ "K", eingebaut in hitzebeständige Metallrohre nach zwei Jahren Einsatz einen Drift von -25K aufweisen. Eine regelmäßige Überprüfung der eingebauten Elemente ist unbedingt ratsam. So kann beispielsweise ein Element des gleichen Typs wie die eingebauten zurückbehalten und zur turnusmäßigen Kontrolle der Elemente benutzt werden. Hierzu wird das zu prüfende Thermometer (Thermoelement mit Schutzhülse und Anschlusskopf) durch dieses Thermoelement ersetzt und die angezeigte Temperatur mit der vom Prüfling angezeigten Temperatur verglichen, um so Aussagen über die Alterung des Prüflings treffen zu können.

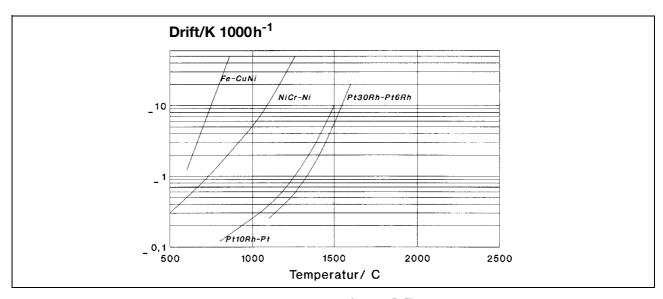


Abbildung 16: Alterung von Thermoelementen (nach [1])

Danach wird das Kalibrier-Thermoelement wieder durch den Prüfling ausgetauscht. Leerrohre neben dem eigentlichen Thermoelement, in welche das Vergleichsthermoelement eingeführt werden kann, machen den Ausbau des Prüflings überflüssig und sollten daher schon bei der Konstruktion berücksichtigt werden. Bei Thermometern mit keramischen Schutzhülsen dürfen diese nur langsam einem Temperaturwechsel ausgesetzt werden, indem sie vorsichtig in das Schutzrohr hineingeschoben bzw. herausgezogen werden. Ansonsten können im Keramikmaterial Mikrorisse entstehen, durch die Verunreinigungen an das Element gelangen und dessen Kennlinie ändern.

30 JUMO, FAS 146, Ausgabe 2007-01

3.6 Auswahlkriterien

Die Auswahl des Thermoelement-Typs hängt in erster Linie von der Einsatz-Temperatur ab. Weiterhin sollte ein Element mit hoher Thermospannung gewählt werden, um ein möglichst störunempfindliches Messsignal zu erhalten.

In der folgenden Eigenschaften von Thermoelementen sind die verschiedenen Elemente zusammen mit einer kurzen Charakterisierung aufgeführt. Die empfohlenen Maximaltemperaturen können nur als Eckwerte angenommen werden, da sie stark von den Einsatzbedingungen abhängen. Sie beziehen sich auf einen Drahtdurchmesser von 3mm bei den unedlen und 0,5mm bei den edlen Elementen.

Cu-CuNi	350°C ¹⁾	Geringe Verbreitung.
Fe-CuNi	700°C ¹⁾	Stark verbreitet, preiswert, korrosionsgefährdet.
NiCr-CuNi	700°C ¹⁾	Geringe Verbreitung, hohe Thermospannung.
NiCr-Ni	1000°C	Im Bereich von 800 - 1000°C oft eingesetzt, auch für den unteren Temperaturbereich geeignet.
NiCrSi-NiSi	1300°C	(Noch) wenig verbreitet. Kann teilweise edle Elemente ersetzen.
Pt10Rh-Pt	1500°C (1300°C ¹⁾)	Hohe Kosten, sehr gute Langzeitkonstanz, eng toleriert.
Pt30Rh-Pt6Rh	1700°C	Hohe Kosten, geringste Thermospannung, hohe Maximaltemperatur.

^{1.} Nach DIN 43710 (1977) bei Verwendung in reiner Luft

Tabelle 7: Eigenschaften von Thermoelementen

3.6.1 Typ "T" (Cu-CuNi)

Der in der DIN 43 710 für das Cu-CuNi-Element angegebene Grenzwert von 400°C wurde auf 350°C reduziert, da dieses Element nach IEC 584 in seiner Toleranz nur bis zu dieser Temperatur definiert ist; in reiner Luft tritt oberhalb 200°C bereits Oxidation auf. Oberhalb von 350°C oxidiert der Kupferschenkel sehr schnell und es verändert sich die Spannungsreihe. Ferner sind durch den gut wärmeleitenden Kupferschenkel leicht Wärmeableitfehler möglich. Häufig wird das Thermoelement zur Tieftemperaturmessung bis -270°C eingesetzt. Die Verbreitung dieses Elementes ist sehr gering. Steht die Korrosionsbeständigkeit im Vordergrund, sollte eher auf das NiCr-Ni-Element zurückgegriffen werden, da dieses verbreiteter ist.

3.6.2 Typ "J" (Fe-CuNi)

Das Fe-CuNi- Element ist das verbreitetste Thermoelement von allen. Neben traditionellen Gründen liegen die Ursachen hierfür in seinem geringen Preis und der vergleichsweise hohen Thermospannung. Es findet im unteren bis mittleren Temperaturbereich Anwendung, sofern nicht aus Gründen der Korrosionsbeständigkeit das NiCr-Ni-Element angebrachter ist. Die Spannungsreihe in der Norm DIN EN 60 584 wird zwar bis 1200°C angegeben. Da aber die Oxidationsrate über 750°C zunimmt, sollte das Thermoelement nicht höher betrieben werden. Bei 769°C durchläuft der Eisenschenkel eine magnetische Umwandlung und bei 910°C eine Kristallstrukturänderung. Beide Effekte bewirken eine nachhaltige Änderung des Ausgangssignals. Wird das Thermoelement in feuchter Umgebung eingesetzt (Achtung auch bei Taupunkt-Unterschreitung), so rostet der ungeschützte Eisenschenkel. In der Gegenwart schwefelhaltiger Gase oberhalb von 500°C tritt leicht eine Versprödung des Eisens ein. Auch als Mantelthermoelement ist das Fe-CuNi-Element sehr verbreitet.

JUMO, FAS 146, Ausgabe 2007-01 31

3.6.3 Typ "E" (NiCr-CuNi)

Das NiCr-CuNi-Element unterscheidet sich von den anderen durch seine vergleichsweise hohe Thermospannung, weshalb es vor allem im unteren Temperaturbereich eingesetzt wird. In den USA ist es stark verbreitet, wogegen es in Europa kaum angewandt wird. Auf Grund der großen Spannungsempfindlichkeit wird das Thermoelement auch zur Tieftemperaturmessung eingesetzt. Wegen der geringen Wärmeleitfähigkeit seiner Thermoschenkel wird es auch in Strahlungspyrometern eingesetzt, wenngleich hierfür günstigere Elemente mit noch höheren Spannungen zu Verfügung stehen [2].

3.6.4 Typ "K" (NiCr-Ni)

Das NiCr-Ni-Element zeigt eine höhere Beständigkeit gegen Oxidation als die Elemente "E" und "J" und wird deshalb bei Temperaturmessungen über 500°C eingesetzt. Bei Temperaturen über 750°C ist der ungeschützte Einsatz zu vermeiden, da die Oxidationsrate stark ansteigt. Gleiches gilt für die Temperaturmessung in schwefelhaltiger, oxidierender oder reduzierender Atmosphäre. Bei Einsatz im Vakuum und hohen Temperaturen muss die Vakuumempfindlichkeit beachtet werden, da das Chrom langsam aus dem Plusschenkel herausdiffundiert. Bei Anwesenheit von Sauerstoff oder Wasserdampf kann es zur sogenannten Grünfäule kommen. Zwischen 800°C und 1050°C wird das Chrom, nicht jedoch das Nickel oxidiert. Der Messfehler kann bis zu mehreren 100°C betragen. Im Temperaturbereich von 400°C bis 600°C durchläuft der positive Schenkel eine reversible Strukturänderung, die bis zu 5K Änderung im Ausgangssignal beträgt.

3.6.5 Typ "N" (NiCrSi-NiSi)

Beim NiCrSi-NiSi-Element ist die obere Temperatur gegenüber dem NiCr-Ni-Element auf 1300°C angehoben. Das zulegierte Silizium oxidiert an der Oberfläche der Thermoschenkel und bildet eine Schutzschicht gegen Korrosion. Das Silizium unterdrückt auch den reversiblen "K-Zustand" des Thermoelementes Typ "K". Es kann daher die erheblich teureren Platinelemente teilweise ersetzen. Es wird auch als Mantelelement geliefert, wobei das Mantelmaterial dem Thermomaterial sehr ähnlich ist. Dies soll eine Vergiftung des Thermomaterials vermeiden.

3.6.6 Typ "R", "S" und "B"

Generell ist die Lebensdauer der Edelmetall-Thermoelemente durch das Kornwachstum in den Thermodrähten begrenzt. Die mechanische Festigkeit verringert sich und das Material versprödet. Ferner können entlang der Korngrenzen leichter Verunreinigungen eindiffundieren und die Thermospannung verändern.

Die edlen Thermopaare kommen wegen der hohen Kosten und den geringen Thermospannungen erst bei Temperaturen oberhalb 800°C zum Einsatz. Sie bieten neben der deutlich geringeren Alterungsdrift den Vorteil einer niedrigeren Grundtoleranz, wie Grundtoleranz edler Thermoelemente zeigt:

Thermoelemente	Grenzabweichung (Klasse 2/Klasse 1)			
	600 °C	800 °C	1000 °C	
Fe-CuNi "J"	±4,5/2,4°C	±6,0/3,2°C	-	
NiCr-Ni "K"	±4,5/2,4°C	±6,0/3,2°C	±7,5/4,0°C	
Pt10Rh-Pt "S"	±1,5/1,0°C	±2,0/1,0°C	±2,5/1,0°C	

Tabelle 8: Grundtoleranz edler Thermoelemente

Nachteilig sind ihr hoher Preis und die geringe Thermospannung. Das Pt13Rh-Pt-Element (Typ "R") ist hauptsächlich in den angelsächsischen Ländern verbreitet. Die Frage des Einsatzes eines Elementes vom Typ "S" oder "R" richtet sich vielfach nach der im Gerät vorhandenen Linearisierung. Elemente vom Typ "B" werden wegen ihrer geringen Thermospannungen nur bei Temperaturen oberhalb 1300°C eingesetzt. Bei Verwendung eines gasdichten Schutzrohres kann die Maximaltemperatur auf 1800°C gesteigert werden.

33

3.7 Genormte Ausgleichsleitungen

Ausgleichsleitungen für genormten Thermoelemente sind in ihren elektrischen und mechanischen Eigenschaften in den Normen IEC 584-3 festgelegt. Sie sind entweder aus dem gleichen Material wie das Element selbst gefertigt (Thermoleitungen, extension cables) oder aus Sonderwerkstoffen mit gleichen thermoelektrischen Eigenschaften in eingeschränkten Temperaturbereichen (Ausgleichsleitungen, compensating cables). Sie bestehen aus verdrillten Adern und werden durch einen Farbcode und Kennbuchstaben gekennzeichnet, die sich wie folgt ableiten:

1. Buchstabe: Kennbuchstabe für die Elementart nach Norm

2. Buchstabe: X: Gleicher Werkstoff wie das Element

C: Sonderwerkstoff

3. Buchstabe: Bei mehreren Ausgleichsleitungstypen werden diese durch einen

dritten Buchstaben unterschieden.

Beispiel:

KX: Ausgleichsleitung für NiCr-Ni-Element, Typ "K", bestehend aus Thermomaterial RCA: Ausgleichsleitung für PtRh-Pt-Element, Typ "R", bestehend aus Sondermaterial, Typ A

Für Ausgleichsleitungen sind zwei Toleranzklassen definiert, die Klasse A und B. Klasse A ist enger toleriert und wird nur von Ausgleichsleitungen aus dem gleichen Material wie die Elemente erreicht, also den X-Typen. Standardgemäß werden Ausgleichsleitungen nach Klasse B geliefert.

Grenzabweichungen von Ausgleichsleitungen gibt die Grenzabweichungen der verschiedenen Ausgleichsleitungsklassen wieder:

Elementart	Klasse der Gren	zabweichungen	Anwendungs-	Messtemperatur
und Drahtsorte	1	2	temperaturbereich [°C]	[°C]
JX	$\pm 85 \mu V / \pm 1,5 ^{\circ} C$	±140µV / ±2,5°C	-25 bis + 200	500
TX	± 30µV / ±0,5°C	± 60µV/±1,0°C	-25 bis + 100	300
EX	±120µV / ±1,5°C	±200µV / ±2,5°C	-25 bis + 200	500
KX	± 60µV / ±1,5°C	±100µV / ±2,5°C	-25 bis + 200	900
NX	± 60µV / ±1,5°C	±100µV / ±2,5°C	-25 bis + 200	900
KCA	-	±100µV / ±2,5°C	0 bis 150	900
KCB	-	±100µV / ±2,5°C	0 bis 100	900
NC	-	±100µV / ±2,5°C	0 bis 150	900
RCA	-	± 30µV / ±2,5°C	0 bis 100	1000
RCB	-	± 60µV / ±5,0°C	0 bis 200	1000
SCA	-	± 30µV / ±2,5°C	0 bis 100	1000
SCB	-	± 60µV / ±5,0°C	0 bis 200	1000

Tabelle 9: Grenzabweichungen von Ausgleichsleitungen

Der Anwendungstemperaturbereich kennzeichnet die Temperatur, welcher die gesamte Leitung einschließlich der Klemmstelle zum Thermoelement ausgesetzt werden darf, um die angegebenen Toleranzen nicht zu überschreiten.

Sie kann außerdem noch durch das Isolationsmaterial des Kabels eingeschränkt werden. Wegen der Nichtlinearität der Thermospannungen gelten die angegebenen Grenzabweichungen in μV oder $^{\circ}$ C nur bei einer Messtemperatur, welche in der rechten Spalte angegeben ist. Konkret bedeutet dies beispielsweise:

Ein Thermoelement vom Typ "J" ist an eine Ausgleichsleitung vom Typ JX, Klasse 2, angeschlossen. Beträgt die Messtemperatur konstant 500°C und schwankt die Klemmentemperatur und/oder

die Temperatur auf die Ausgleichsleitungen von -25°C auf 200°C, so verändert sich dabei die angezeigte Temperatur höchstens um ±2,5°C.

Eine Unterscheidung der Ausgleichsleitungen für Cu-CuNi- bzw. Fe-CuNi-Elemente nach den Normen DIN EN 60 584 bzw. DIN 43 713 ist prinzipiell nicht erforderlich; für die genannten Elemente können die gleichen Ausgleichsleitungen benutzt werden. Zu beachten ist allerdings, dass teilweise Thermoelemente derart hergestellt werden, dass die Adern der Ausgleichsleitung selbst zur Messstelle verbunden und danach mit einer Schutzarmatur versehen werden. Dann muss selbstverständlich sehr wohl zwischen den Elementen beider Normen unterschieden werden. Auch muss beachtet werden, dass für Ausgleichs- und Thermoleitungen die Thermospannungen nur bis zu einer Messtemperatur von 200°C identisch mit denen der zugehörigen Thermospannungen sind. Derart hergestellte Fühler können daher nur bis zu dieser Temperatur eingesetzt werden. Die Kennlinie des Platin-Rhodium-Elementes "B" verläuft am Anfang so flach, dass bei nicht zu hohen Klemmentemperaturen als Ausgleichsleitung Kupfer verwendet wird: Bei einer Klemmentemperatur von 100°C würde der Messwert hierdurch um 0,032mV verschoben, dies entspräche bei einer Messtemperatur von 1500°C einem Fehler von -2,7K.

3.7.1 Farbkennzeichnung von Ausgleichsleitungen

Für die Elemente nach der DIN EN 60 584 gilt:

Der Plusschenkel hat die gleiche Farbe wie der Mantel, der Minusschenkel ist weiß.

Für die "alten" Elemente vom Typ "U" und "L" nach DIN 43 713 gelten jedoch hiervon abweichende Kennzeichnungen.

Element	Тур	Mantel	Plus	Minus
Cu-CuNi	Т	Braun	Braun	Weiß
Fe-CuNi	J	Schwarz	Schwarz	Weiß
NiCr-Ni	K	Grün	Grün	Weiß
NiCrSi-NiSi	N	Rosa	Rosa	Orange
NiCr-CuNi	E	Violett	Violett	Weiß
Pt10Rh-Pt	S	Orange	Orange	Weiß
Pt13Rh-Pt	R	Oange	Oange	Weiß

Tabelle 10: Elemente nach IEC 584-1

Fe-CuNi	L	Blau	Rot	Blau
Cu-CuNi	U	Braun	Rot	Braun

Tabelle 11: Elemente nach DIN 43 713 (neu)

Neben diesen Farbkennzeichnungen für Ausgleichsleitungen gibt es auch noch solche nach der DIN 43 714 von 1979. Sie weichen in folgenden Punkten von den oben genannten ab:

NiCr-Ni	K	Grün	Rot	Grün
Pt10Rh-Pt	S	Weiß	Rot	Weiß
Pt13Rh-Pt	R	Weiß	Rot	Weiß

Tabelle 12: Farbcodierung nach DIN von 1979

Einzige Ausnahme bilden die Leitungen für die eigensicheren Messkreise bei explosionsgeschützten Geräten. Sofern diese farbig sind, ist der Mantel bei allen Ausgleichsleitungen hellblau einge-

3 Thermoelemente

färbt, während die Adern die angegebenen Kennfarben besitzen. (Bei der blauen Kennfarbe für das Cu-CuNi-Element nach DIN 43 713 handelt es sich um einen dunklen Farbton.)

Gemäß DIN 43 714 sind zur elektromagnetischen Abschirmung die Adern der Leitungen verdrillt. Zusätzlich kann eine Abschirmung durch Folien oder Geflechte vorliegen. Der Isolationswiderstand der Adern untereinander und zum Schirm darf den Minimalwiderstand $10^7 \Omega \cdot \text{m}^{-1}$ nicht unterschreiten, die Duchschlagspannung ist größer als 500V AC.

3.8 Anschluss von Thermoelementen

Insbesondere beim Fe-CuNi-Element sollte beachtet werden, dass der Plusschenkel aus reinem Eisen besteht, was an Klemm- und Steckverbindungen zu erhöhter Korrosion führen kann. Namentlich der Übergang Eisen-Kupfer, wie er beispielsweise beim Anschluss einer kupfernen Anschlussleitung entsteht, stellt ein galvanisches Element dar. Bei vorhandener Feuchtigkeit führt dies zur Bildung eines Lokalelementes mit erhöhter Korrosion. Dabei auftretende parasitäre Spannungen können das Messergebnis erheblich verfälschen. Verzinnte Klemmen bzw. Leitungen mit verzinnten Adern sind daher blankem Kupfer unbedingt vorzuziehen. Zinn ist zwar elektrochemisch erheblich edler als Eisen, durch Passivierung an seiner Oberfläche aber weniger reaktiv.

Vielfach stellt sich die Frage, ob Thermodrähte mit normalen Klemmen aus Messing oder Kupfer mit der Ausgleichsleitung verbunden oder verlängert werden dürfen. Von Aspekten der Korrosion an der Kontaktstelle zweier verschiedener Metalle einmal abgesehen, ist dies durchaus möglich. Das Zwischenschalten einer bzw. zwei Klemmen in einen bzw. beide Schenkel eines Thermopaares bzw. der Ausgleichsleitung ist unbedenklich, solange auf beiden Seiten der Klemme die gleichen Temperaturen herrschen.

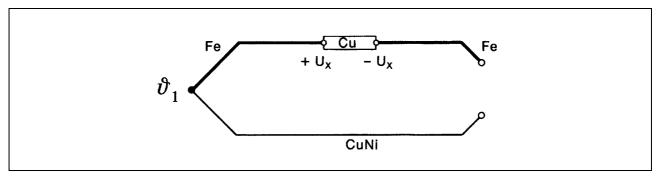


Abbildung 17: Einfügen einer Kupferklemme in den Thermokreis

Die entstehenden Thermospannungen an den Übergängen Fe/Cu bzw. Cu/Fe heben sich bei gleicher Temperatur wegen der unterschiedlichen Polaritäten auf, unabhängig davon, wie hoch die Temperatur an dieser Verbindungsstelle ist und aus welchem Material sie besteht. Wohl gemerkt, gilt dies nur für gleiche Temperaturen an beiden Enden.

Bei zwei Klemmen für jeweils eine Ader der Ausgleichsleitung können an diesen durchaus verschiedene Temperaturen herrschen, wichtig ist nur die Temperaturgleichheit an den beiden Enden jeweils einer Klemme. Bei Gehäusedurchführungen, bei denen die Innen- und die Außentemperatur sehr unterschiedlich sind, können Probleme mit so erzeugten zusätzlichen Thermospannungen auftreten, welche die Messung verfälschen. Es gibt daher spezielle thermospannungsfreie Stecker, welche die beschriebenen Phänomene vermeiden.

Bei größerer Leitungslänge sollte die Anschlussleitung (Ausgleichsleitung bzw. Kupferleitung) abgeschirmt und einseitig geerdet werden. Hierzu stehen abgeschirmte Ausgleichsleitungen zur Verfügung; gegebenenfalls ist die Verwendung eines Vergleichsstellenthermostates und herkömmlichen abgeschirmten Kupferleitungen angebracht. Bei Mantelthermoelementen (Kapitel 3.10 "Man-

telthermoelemente") kann die Verwendung des Mantels als Abschirmung Probleme aufwerfen: In einigen Ausführungsformen ist zur Verkürzung der Ansprechzeit die Messstelle mit dem Mantel verschweißt. Die Abschirmung wäre dann direkt auf den Fühlereingang des angeschlossenen Gerätes aufgelegt und somit unwirksam. Überhaupt ist bei Elementen, bei denen die Messstelle mit dem Schutzrohr verschweißt ist, hinsichtlich der Störempfindlichkeit erhöhte Vorsicht geboten, da das Mantelrohr in diesem Fall wie eine Antenne wirken kann.

Aber auch dann, wenn die Messstelle nicht mit dem Schutzrohr verschweißt ist, sollte die Umhüllung eines Mantelthermoelementes nicht als Abschirmung verwendet werden: Da sie aus blankem Material besteht, können durch sie bei elektrisch beheizten Öfen zwischen dem Ofenmaterial und dem Erdungspunkt Ausgleichsströme fließen. Diese können das Messergebnis verfälschen bzw. bei genügend hohen Ausgleichsströmen das Sondenrohr zerstören.

Allgemein lässt sich sagen: Thermoelemente, die leitend mit dem Schutzrohr verbunden sind, führen durch Einkopplung von Spannungen auf die angeschlossenen Geräte leicht zu Störungen bzw. Fremdspannungen.

Auch bilden zwei derartige Eingänge eine Stromschleife, über die beide Eingänge miteinander verbunden werden. Da derartige Stromschleifen einen großen Wirkungsquerschnitt haben, werden hierdurch Störungen bevorzugt eingeschleift.

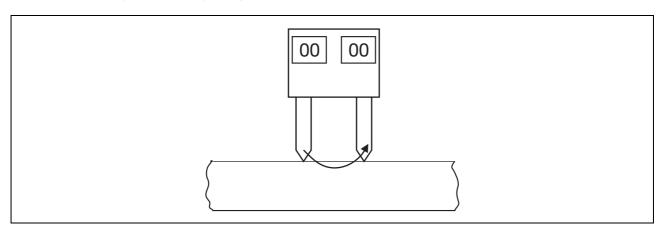


Abbildung 18: Ausbildung einer Leiterschleife

Thermoelemente sollten unter derartigen Voraussetzungen immer galvanisch getrennt sein, d. h. die Verstärkerschaltungen dürfen intern keine elektrische Verbindung zu der übrigen Elektronik haben. Dies ist bei den meisten Geräten für Thermoelementanschluss bereits vorgesehen.

Keramische Materialien, wie sie zur Isolation der Thermoelemente im Schutzrohr verwendet werden, verlieren oberhalb 800 bis 1000°C merklich an Isolationswiderstand. Dadurch treten im Hochtemperaturbereich die genannten Phänomene auch bei Thermoelementen auf, deren Messpunkt nicht mit dem Schutzrohr verschweißt ist. Auch dann ist eine galvanische Trennung unbedingt ratsam.

Bei elektrisch beheizten Öfen im Hochtemperaturbereich ist zudem darauf zu achten, dass die zunehmende Leitfähigkeit der keramischen Isolationsmaterialien dazu führen kann, dass die Netzspannung auf das Thermoelement eingeschleift wird. Auch hier ist daher eine galvanische Trennung gegenüber dem Netz- und Erdpotenzial mit einer Spannungsfestigkeit über der Spitzenspannung der Netzspannung (Heizspannung) unbedingt angebracht.

3 Thermoelemente

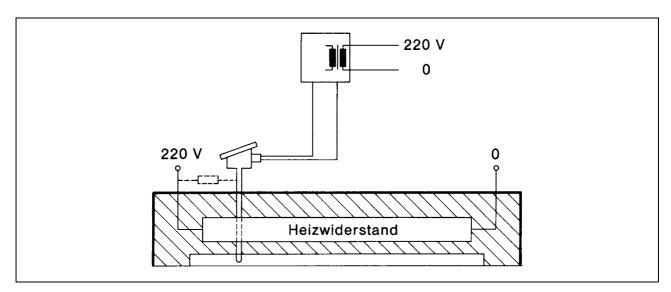


Abbildung 19: Einschleifung von Netzspannungen

Die galvanische Trennung der Eingänge gewinnt dann eine besondere Bedeutung, wenn bei elektrisch beheizten Öfen mehrere Thermoelemente eingesetzt und mit einem oder mehreren Geräten verbunden sind. Beispielsweise zwei Elemente, die mit je einem Regler verbunden sind. Die Regler selbst seien über einen zweiten Eingang zur externen Sollwertvorgabe miteinander verbunden.

Die Thermoelementeingänge müssen in diesem Fall in zweierlei Hinsicht galvanisch getrennt sein: Zum einen bezüglich der Netzspannung, zum anderen hinsichtlich der externen Sollwerteingänge. Die Trennung bezogen auf die Netzspannung ist unproblematisch; sie ist bei Geräten mit eingebautem Netzteil im Regelfall deutlich höher als die Versorgungsspannung. Die Trennung der Eingänge untereinander ist meist jedoch nicht so hoch ausgelegt. Bei ungünstiger Installation kann nun folgendes Problem auftreten:

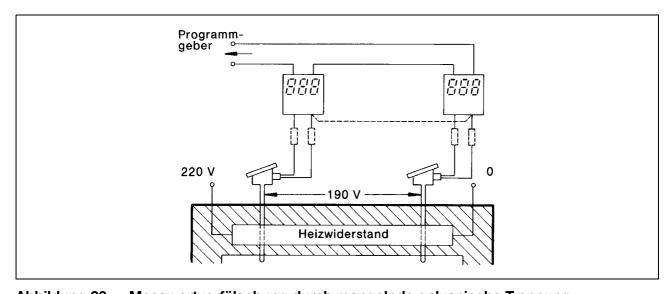


Abbildung 20: Messwertverfälschung durch mangelnde galvanische Trennung

Sind die Thermoelemente in der Nähe der Heizwicklungen, jedoch mit großem Abstand zueinander montiert, tritt zwischen ihnen eine Potenzialdifferenz auf, die über den Isolationswiderstand abgegriffen wird. Diese Potenzialdifferenz liegt leicht in der Größenordnung der Heizspannung, und es kann sein, dass die galvanische Trennung nicht mehr Gewähr leistet ist. Abhilfe schafft hier das Verbinden der Thermoelemente an deren Minus- oder Plusschenkel, sodass diese auf gleiches Po-

38 JUMO, FAS 146, Ausgabe 2007-01

tenzial gelegt werden. Meist wird dies der Einfachheit halber an den Geräteklemmen vorgenommen. Bei längeren Ausgleichsleitungen kann dies jedoch Probleme aufwerfen:

Bei einer angenommenen Spannung von 190V und einem Isolationswiderstand von 1 M Ω fließt ein Strom von 0,19mA. Dieser Strom, der über die Ausgleichsleitungen fließt, verursacht an deren Widerstand - es sei einmal von 10 Ω ausgegangen - einen Spannungsabfall von 1,9mV. Die Thermospannung wird um diesen Betrag erhöht; Fehlmessungen sind die Folge.

Günstiger ist es daher, den Potenzialausgleich möglichst in der Nähe der Thermoelemente vorzunehmen. Hierzu werden beispielsweise deren Schutzarmaturen leitend miteinander verbunden und eventuell geerdet. Somit fließen keine Ausgleichsströme über die Anschlussleitungen, und zusätzlich auftretende Spannungen entfallen.

3.9 Ausführung von Thermoelementen

Unedle Thermoelemente werden aus Drähten von 1 bis 3mm gefertigt, edle aus Drähten von 0,5 oder 0,35mm. Die unterschiedlichen Durchmesser liegen vornehmlich in den Kosten begründet. Dickere Thermodrähte haben grundsätzlich eine längere Lebensdauer.

Die Thermodrähte sind an einem Ende verschweißt oder verlötet. Dabei ist die Art der Verbindung streng genommen von untergeordneter Bedeutung. Sie können verdrillt, verschweißt, verlötet usw. sein. Verdrillungen können allerdings bei Verzunderung der Materialien zu Kontaktschwierigkeiten führen. Außerdem können sich durch Feuchtigkeit, die in die Grenzschicht zwischen den Metallen gerät, galvanische Elemente bilden. Hierdurch wird der Messeffekt verfälscht.

3.10 Mantelthermoelemente

Eine besondere Bauform der Thermoelemente stellen die Mantelthermoelemente dar. Zu ihrer Herstellung werden in Edelstahlrohre von ca. 1m Länge und einigen cm Innendurchmesser zwei Stangen aus Thermomaterial positioniert und der Innenraum mit Magnesium- oder Aluminiumoxid gefüllt und verdichtet. Nachdem die so vorbereiteten Rohre an beiden Enden verschlossen wurden, werden sie zu Drähten von 15 bis 0,5mm Dicke ausgezogen. Dabei bleibt die Geometrie im Rohrinneren unverändert. Ein Mantelthermoelement mit 1 mm Durchmesser weist infolgedessen das gleiche Verhältnis von Wanddicke zu -stärke, Dicke der Aluminiumoxid-Isolierung, Durchmesser der Thermodrähte usw. auf, wie das erheblich größere Ausgangsstück. Die so erzeugten Mantelthermoelemente werden als Endlosware geliefert und später konfektioniert, wobei nahezu jede Länge lieferbar ist. Beim Konfektionieren werden sie zunächst abgelängt und die Thermodrähte an einem Ende verschweißt. Das Mantelrohr wird am gleichen Ende laserverschweißt. Am anderen Ende wird vom Mantelrohr ein Stück entfernt und die Thermodrähte als Anschlussdrähte freigelegt oder mit einem Stecker bzw. einer Anschlussleitung aus Kupferlitze versehen. An diesem Ende werden sie zusätzlich mit einem Harz versiegelt, wodurch das Eindringen von Feuchtigkeit und eine dadurch verursachte Verminderung des Isolationswiderstandes verhindert. Die so hergestellten Elemente bieten zahlreiche Vorteile: Sie erlauben dünne, biegsame Ausführungsformen bis herab zu 0,5mm Außendurchmesser, haben eine hohe Erschütterungsfestigkeit und wegen der kleinen Abmessungen sehr kurze Ansprechzeiten. Ausgleichsleitungen entfallen, da das Mantelthermoelement selbst als (temperaturfeste!) Ausgleichsleitung genutzt wird. Sie werden nur aus unedlen Thermomaterialien gefertigt, da die edlen Materialien nicht genügend Duktilität besitzen und im Ziehvorgang brechen würden. Die Kennlinien der Mantelthermoelemente entsprechen den einschlägigen Normen.

Es muss jedoch wegen des geringen Abstandes zwischen den Thermodrähten und dem Sondenrohr beachtet werden, dass bei höheren Temperaturen der Isolationswiderstand schnell abnimmt. Die maximale Einsatztemperatur hängt vom Duchmesser des Mantelthermoelementes ab; auch hier haben dickere Elemente höhere Temperaturgrenzen. Maximaltemperaturen von Mantelthermo-

3 Thermoelemente

elementen zeigt diese Abhängigkeit nach Herstellerangaben für die Dauereinsatztemperaturen zweier Elementtypen.

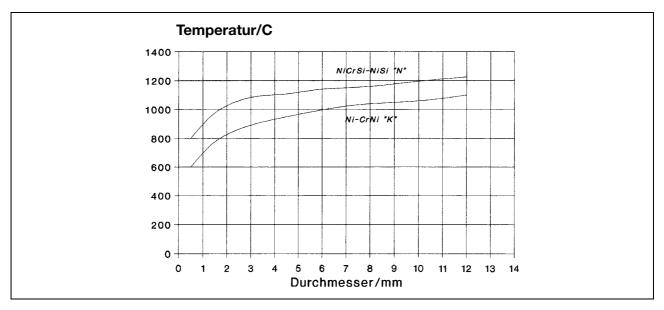


Abbildung 21: Maximaltemperaturen von Mantelthermoelementen

Von besonderer Bedeutung ist bei den Mantelthermoelementen, dass wegen der starren Kopplung zwischen dem Mantel und den Thermodrähten diese bei unterschiedlichen Ausdehnungskoeffizienten erhöhten mechanischen Belastungen ausgesetzt sind. Dies führt zu einer erhöhten Drift.

Weiterhin kann wegen des geringen Abstandes der Thermodrähte zum Mantelmaterial leicht eine Vergiftung durch das Mantelmaterial auftreten. **Körtvelessy** [1] zeigt, dass hierfür im Füllmaterial vorhandener Sauerstoff in Form von Luft, Wasser oder Kohlendioxid verantwortlich ist, der als Transportmedium für einen Ausgleich der Schwefel- und Kohlenstoffkonzentrationen im Mantel- und Thermomaterial sorgt und somit die Materialien in ihrer Zusammensetzung ändert.

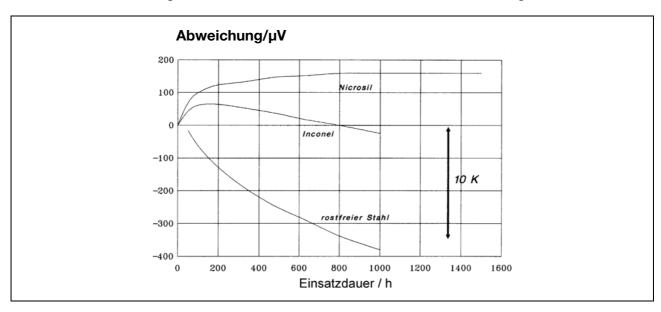


Abbildung 22: Drift in Abhängigkeit vom Mantelmaterial (nach [18])

Wie stark die Drift eines Mantelthermoelementes vom verwendeteten Mantelmaterial abhängt, zeigt exemplarisch eine Untersuchung [18] an einem Element vom Typ N mit einem Durchmesser von 3mm, das von verschiedenen Materialien umhüllt war.

Man versucht daher, das Mantelmaterial in seinen Eigenschaften möglichst ähnlich dem Thermomaterial zu wählen. So wird für Thermoelemente vom Typ N beispielsweise vom Hersteller ein Mantel aus Nicrosil empfohlen, ein Material, das in seiner Zusammensetzung dem Plusschenkel dieses Elementes entspricht.

Der Einbau und die Fixierung derartiger Elemente erfolgt am besten durch Klemmverschraubungen, wodurch eine freie Montage des Sondenrohres möglich ist. Alternativ hierzu werden sie direkt auf das Messobjekt montiert bzw. mit Schellen geklemmt. Da sie nicht verkürzt werden können, werden überschüssige Längen zu einem Ring zusammengerollt.

Mantelthermoelemente werden auch in normalen Messeinsätzen nach DIN eingesetzt und mit Schutzrohr und Anschlusskopf zu Thermoelementen konfektioniert. Dies ist vielfach vom Herstellungsprozess günstiger als die Verwendung herkömmlicher Thermopaare.

3.11 Fehlersuche

Nachfolgend sind einige mögliche Fehler bei der Installation eines Thermoelementes und ihre Auswirkungen genannt. Selbstverständlich sind auch andere Ursachen für die aufgezeigten Fehlfunktionen möglich. Einer der am häufigsten auftretenden Fehler ist das Vergessen bzw. die falsche Auswahl der Ausgleichsleitungen, an die an dieser Stelle noch einmal erinnert sei.

Ein Thermoelement kann mit einem einfachen Durchgangsprüfer oder Ohmmeter auf Durchgang geprüft werden. Der Widerstand des Thermoelementes darf nur wenige Milliohm betragen. Der Widerstand der Ausgleichsleitung erreicht aber speziell bei Elementen mit Konstantan (Fe-CuNi, Cu-CuNi, NiCr-CuNi) durchaus einige Ohm, da Konstantan ein schlechter Leiter ist und auch zur Herstellung von Drahtwiderständen verwendet wird. Ein an den Klemmen des Anzeigegerätes oder Reglers gemessener Schleifenwiderstand von einigen Ohm ist daher noch kein Indiz für einen ungewöhnlich hohen Übergangswiderstand. Die nachstehende Widerstände von Ausgleichs- und Thermoeleitungen gibt den Widerstand von Hin-und Rückleitung für verschiedene Ausgleichsbzw. Thermoleitungen an:

Ausgleichsleitung	Querschnitt	Widerstand
Fe-CuNi	2x 0,25mm ²	$2,5\Omega \cdot m^{-1}$
	2x 0,75 mm ²	$0.9\Omega\cdot m^{-1}$
NiCr-Ni	2x 0,25mm ²	4,0Ω · m ⁻¹
	2x 0,75 mm ²	$1,5\Omega\cdot m^{-1}$
PtRh-Pt	2x 0,25mm ²	$0.4\Omega \cdot m^{-1}$
	2x 0,75 mm ²	$0,15\Omega\cdot m^{-1}$
Kupferleitung	2x 0,25mm ²	$0.14\Omega \cdot m^{-1}$
	2x 0,75 mm ²	$0.05\Omega \cdot m^{-1}$

Tabelle 13: Widerstände von Ausgleichs- und Thermoeleitungen

Das Thermoelement kann am einfachsten mit einem Millivoltgeber simuliert werden, der direkt an das Anzeigegerät angeschlossen wird. Die in den Spannungsreihen angegebenen Werte (Kapitel 3.5.1 "Spannungsreihen") werden vorgegeben und die angezeigten Werte mit den zugeordneten Temperaturen überprüft. So kann am schnellsten festgestellt werden, ob die eingestellte Linearisierung bzw. der Messbereich korrekt gewählt wurden. Für einen Schnelltest kann auch ein Stück Ausgleichsleitung abisoliert, die Adern an einem Ende verdrillt und an das Anzeigegerät angeschlossen werden. Die verdrillten Adern bilden ein Thermoelement, mit dem die prinzipielle Funktion des Gerätes durch Erwärmen der Verbindungsstelle überprüft werden kann.

3 Thermoelemente

3.11.1 Mögliche Anschlussfehler und ihre Auswirkungen:

- Anzeigeinstrument zeigt Raumtemperatur an: Thermoelement oder Leitung unterbrochen.
- Anzeige stimmt dem Betrag nach, hat aber negatives Vorzeichen:
 Polarität am Anzeigegerät vertauscht.
- Angezeigte Temperatur deutlich zu hoch; Anzeige driftet:
 - a) Polarität der Ausgleichsleitung im Anschlusskopf vertauscht (durch das Vertauschen der Leitungen werden zwei weitere Elemente gebildet.).
 - b) Falsche Ausgleichsleitung (s. u.).
- Deutlich zu hohe oder zu niedrige Anzeige:
 - a) Falsche Linearisierung im Anzeigegerät.
 - b) Falsche Ausgleichsleitung bzw. verpolt angeschlossen (s. u.).
- Anzeige um einen festen Betrag zu hoch oder zu niedrig: Falsche Vergleichsstellentemperatur.
- Anzeige korrekt, aber driftet langsam:
 Vergleichsstellentemperatur nicht konstant oder nicht erfasst.
- Anzeige um 20 bis 25 °C falsch:
 Element vom Typ L als J linearisiert oder umgekehrt.
- Bei einpolig abgeklemmtem Element wird noch ein Wert angezeigt:
 - a) Elektromagnetische Störungen werden auf die Eingangsleitung eingekoppelt.
 - b) Wegen fehlender galvanischer Trennung und mangelhafter Isolation werden parasitäre Spannungen, z. B. durch die Ofenisolation, eingeschleift.
- Auch bei zweipolig abgeklemmtem Element wird ein hoher Wert angezeigt:
 - a) Elektromagnetische Störungen werden auf die Eingangsleitung eingekoppelt.
 - b) Parasitäre galvanische Spannungen, z. B. durch feuchte Isolation in der Ausgleichsleitung.

Element	Ausgleichsleitung	Polarität	Messfehler/°C	Messtemperatur/°C
	Fe-CuNi	richtig	-	
		falsch	- 173 163	
- O NII	NiCr-Ni	richtig	- 41 36	200
Fe-CuNi		falsch	- 155 163	600
	PtRh-Pt	richtig	- 88 78	
		falsch	- 107 97	
	Fe-CuNi	richtig	- 2+ 14	
		falsch	- 218 202	
AUG AU	NiCr-Ni	richtig	- 7,5 7,5	4000
NiCr-Ni		falsch	- 191 175	1000
	PtRh-Pt	richtig	- 98 82	
		falsch	- 125 104	
	Fe-CuNi	richtig	+ 300 + 314	
		falsch	- 440 462	
D. D.	NiCr-Ni	richtig	+ 214 + 228	4000
PtRh-Pt		falsch	- 347 333	1200
	PtRh-Pt	richtig	-	
		falsch	- 105 91	

nach [24]

Tabelle 14: Anzeigefehler bei Verwendung falscher Ausgleichsleitungen

4.1 Der temperaturabhängige Widerstand

Die elektrische Leitfähigkeit eines Metalls basiert auf der Beweglichkeit der Leitungselektronen, dem so genannten Elektronengas. Wird eine Spannung an die Enden eines Metalls gelegt, bewegen sich die Elektronen zum Pluspol. Fehler in der Kristallstruktur des Metalls stören diese Bewegung. Hierzu zählen fremde oder fehlende Gitteratome, Korngrenzen und Atome auf Zwischengitterplätzen. Da diese Fehlstellen temperaturunabhängig sind, ergeben sie einen konstanten Widerstand. Mit wachsender Temperatur schwingen die Atome des Metallgitters verstärkt um ihre Ruhelage und behindern dadurch die Bewegung der Leitungselektronen. Da diese Bewegung linear mit der Temperatur zunimmt, hängt die dadurch verursachte Widerstandszunahme in erster Näherung direkt von der Temperatur ab, man spricht von einem positiven Temperaturbeiwert oder -koeffizienten, einem PTC-Widerstand.

Um diesen Effekt zur Temperaturmessung verwenden zu können, ist ein großer Temperaturkoeffizient, d. h. eine möglichst große Änderung des Widerstandes mit der Temperatur, ideal. Andererseits sollen sich die charakteristischen Eigenschaften des Metalls nach Möglichkeit auch in langen Zeiträumen wenig ändern. Der Temperaturkoeffizient sollte weiterhin möglichst temperatur- und druckunabhängig sowie durch chemische Einflüsse nicht beeinflussbar sein.

Der Zusammenhang zwischen der Temperatur und dem elektrischen Widerstand ist allgemein nicht direkt proportional, sondern wird durch ein Polynom höherer Ordnung beschrieben:

Formel 14:

$$R(T) = R_0 (1 + A \cdot T + B \cdot T^2 + C \cdot T^3 + ...)$$

Der Widerstand R_0 bildet den Nennwiderstand und wird bei einer noch festzulegenden Temperatur bestimmt. Die Terme höherer Ordnung (T^2 , T^3 ...) werden je nach Genauigkeit der Messung berücksichtigt. Die Koeffizienten A, B usw. hängen vom Widerstandsmaterial ab und beschreiben die Temperatur-/Widerstandsabhängigkeit eindeutig.

4.2 Platinwiderstände

Als Widerstandsmaterial hat sich in der industriellen Messtechnik Platin durchgesetzt. Zu seinen Vorteilen zählen die hohe chemische Beständigkeit, vergleichsweise leichte Bearbeitbarkeit (insbesondere zur Drahtherstellung), die Möglichkeit der hochreinen Darstellung und die gute Reproduzierbarkeit der elektrischen Eigenschaften. Diese Eigenschaften werden in der europäischen Norm DIN EN 60 751 vollständig festgelegt, sodass für den Platinmesswiderstand wie kaum einen anderen Temperatursensor eine universelle Austauschbarkeit besteht.

Zu diesen Festlegungen zählen die Temperaturabhängigkeit des Widerstandes, die in einer Grundwertreihe festgeschrieben ist, der Nennwert sowie die zugehörige Bezugstemperatur und die zulässigen Grenzabweichungen. Auch der Temperaturbereich wird in der Norm festgelegt, er reicht von -200 bis +850°C. Bei der Festlegung der Grundwertreihe unterscheidet man zwei Temperaturbereiche:

- -200°C bis 0°C,
- 0°C bis 850°C.

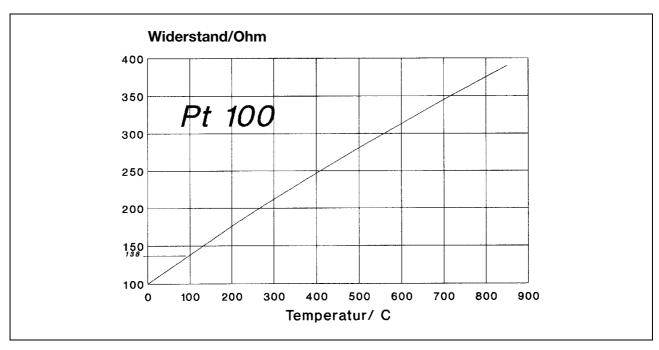


Abbildung 23: Kennlinie eines Pt 100-Temperatursensors

Für den Temperaturbereich von -200 ... 0°C gilt ein Polynom dritten Grades:

Formel 15:

$$R(T) = R_0 (1 + A \cdot T + B \cdot T^2 + C \cdot [T - 100 ^{\circ}C] \cdot T^3)$$

Für den Bereich von 0 bis bis 850°C gilt ein Polynom zweiten Grades:

Formel 16:

$$R(T) = R_0 (1 + A \cdot T + B \cdot T^2)$$

Für die Koeffizienten gilt:

A = 3,9083
$$\cdot 10^{-3} \cdot {}^{\circ}\text{C}^{-1}$$

B = -5,775 $\cdot 10^{-7} \cdot {}^{\circ}\text{C}^{-2}$
C = -4.183 $\cdot 10^{-12} \cdot {}^{\circ}\text{C}^{-4}$

Die Größe R_0 wird als Nennwert oder Nennwiderstand bezeichnet und ist der Widerstandswert bei 0°C. Gemäß DIN EN 60 751 ist für den Nennwert ein Wert von 100Ω definiert, man spricht daher vom Pt 100-Widerstand. Zulässig sind auch die Vielfachen von diesem Wert, so werden Messwiderstände mit Nennwerten von 500Ω und 1000Ω angeboten. Ihr Vorteil liegt in einer höheren Empfindlichkeit, das heißt einer stärkeren Änderung ihres Widerstandes mit der Temperatur (Pt 100: ca. $0.4\Omega/K$; Pt 500: ca. $2.0\Omega/K$; Pt 1000: $4.0\Omega/K$).

Weiterhin ist in der Norm ein Pt 10-Widerstand definiert, der wegen seiner geringen Empfindlichkeit jedoch relativ selten Anwendung findet und dessen Einsatztemperatur oberhalb 600°C liegt. Zumeist findet man kleinere Nennwerte (z. B.: 25Ω , 10Ω , $2,5\Omega$ oder $0,25\Omega$) bei Präzisionsthermometern, die aber dann die Forderungen der ITS 90 erfüllen und für Messungen mit sehr kleinen Messunsicherheiten eingesetzt werden. Auf Grund ihres filigranen und mechanisch sehr empfindlichen Aufbaus können diese Thermometer nicht im industriellen Bereich eingesetzt werden.

Als weitere Kenngröße definiert die Norm einen mittleren Temperaturkoeffizienten zwischen 0 und 100°C. Er gibt die gemittelte Widerstandsänderung bezogen auf den Nennwert bei 0°C an:

Formel 17:

$$\alpha = \frac{R_{100} - R_0}{R_0 \cdot 100 \text{ K}}$$

wobei R₀ = Widerstandswert bei 0°C, R₁₀₀ = Widerstandswert bei 100°C.

Der α -Wert von spektralreinem Platin beträgt 3,925 \cdot 10⁻³°C⁻¹. Beim Platin-Messwiderstand nach DIN EN 60 751 weicht der Temperaturkoeffizient von diesem Wert somit ab. Das hier verwendete Platin wird gezielt mit Fremdstoffen verunreinigt. Hierdurch wird erreicht, dass bei der industriellen Fertigung und auch beim späteren Einsatz über 400°C das Platin weniger Verunreinigungen aus seiner Umgebung aufnimmt und eine höhere Langzeitstabilität erhält.

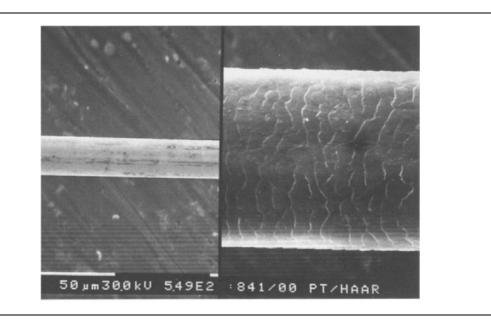


Abbildung 24: Vergleich eines Platindrahtes (links) mit einem Menschenhaar (rechts)

Diese Langzeitstabilität reicht für industrielle Zwecke bei weitem aus. Für Präzisionsthermometer, deren Stabilität im Bereich kleiner 1 mK angesiedelt ist, spielen jedoch schon geringe Diffusionseinflüsse eine bedeutende Rolle. Bei Präzisionsthermometern verwendet man daher relativ dicke Drähte bis 250 μ m Durchmesser. Um das temperaturerfassende Element nicht zu groß werden zu lassen, werden für derartige Präzisionsinstrumente im Bereich über 600°C Nennwerte von 25 bzw. 10Ω eingesetzt. Bei den industriell gefertigten Sensoren werden Drähte mit einem Durchmesser unter 30 μ m verwendet (im Vergleich hierzu beträgt die Dicke eines Menschenhaares ca. 100 μ m).

4.2.1 Berechnung der Temperatur aus dem Widerstand

In der Anwendung als Thermometer wird aus dem Widerstand des Sensors auf die zugehörige Temperatur geschlossen. Die o. g. Formeln geben jedoch die Abhängigkeit des Widerstandes von der Temperatur wieder, nicht die Ermittlung der Temperatur aus dem gemessenen Widerstand. Für Temperaturen oberhalb 0°C lässt sich zur Ermittlung der Temperatur aus dem Widerstand eine geschlossene Form der Darstellung aus der Kennlinie nach DIN EN 60 751 ableiten.

Formel 18:

$$t = \frac{-R_0 \cdot A + [(R_0 \cdot A)^2 - 4 \cdot R_0 \cdot B \cdot (R_0 - R)]^{1/2}}{2 \cdot R_0 \cdot B}$$

R = gemessener Widerstand in Ohm = berechnete Temperatur in °C R₀, A, B = Parameter gemäß DIN IEC 60 751

Für Temperaturen kleiner 0°C lässt sich keine geschlossene Umkehrfunktion angeben. Um aus einem gemessenen Widerstandswert auf den zugehörigen Temperaturwert zu kommen, ist ein nummerisches Näherungsverfahren erforderlich. Im Hinblick auf die erforderliche Genauigkeit ist das Newton'sche Näherungsverfahren ausreichend. Beginnend mit einem beliebigen Startwert t₀ werden die nachfolgenden Iterationswerte nach folgender Form berechnet:

Formel 19:

$$t_{i+1} = t_i - \frac{R(t_i) - R}{R'(t_i)} = t_i - \frac{R_0 \cdot (1 + A \cdot t_i + B \cdot t_i^2 + C \cdot (t_i - 100 \,^{\circ}C) \cdot t_i^3) - R}{R_0 \cdot (A + 2 \cdot B \cdot t_i + C \cdot (3 \cdot t_i^2 \cdot (t_i - 100 \,^{\circ}C) + t_i^3))}$$

Die Iteration wird abgebrochen, wenn zwei aufeinander folgende Iterationsergebnisse sich nicht mehr als die erforderliche Genauigkeit ändern.

Beispiel:

Messwert $R = 67,648\Omega$, Startwert $t_0 = -5$ °C.

Iterationsschritt	T _i /°C	R(t)/ Ω	R'(t)/Ω/°C	t _{i+1} /°C	Abbruchkriterium/K
0	-5,00	98,045	0,391	-82,66	
1	-82,66	67,257	0,402	-81,69	0,9728
2	-81,69	67,648	0,402	-81,69	0,0002
3	-81,69	67,648	0,402	-81,69	0,0000

Tabelle 15: Beispiel für den Ablauf des Iterationsverfahrens

Das Beispiel zeigt, dass bereits nach dem ersten Iterationsschritt die Temperatur auf 1/100K bestimmt wird.

Die Temperatur lässt sich selbstverständlich auch aus der Grundwerttabelle ermitteln. In der Tabelle nicht enthaltene Zwischenwerte werden durch lineare Interpolation errechnet: Um die zu einem Widerstand R gehörige Temperatur t zu ermitteln, werden zwei benachbarte Temperatur-/Widerstandspaare ober- bzw. unterhalb des gesuchten Wertes herangezogen:

Formel 20:

$$t = t_1 + \frac{t_2 - t_1}{R_2 - R_1} \cdot (R - R_1)$$

Beispiel:

Bei einem Pt 100 soll die einem Widerstandswert von 129,53Ω zugeordnete Temperatur berechnet werden.

Intervall aus der Grundwertreihe: $R_1 = 129,37\Omega$ $t_1 = 76\,^{\circ}\text{C}$ $R_2 = 129,75\Omega$ $t_2 = 77\,^{\circ}\text{C}$

Formel 21:

$$t = 76 \,^{\circ}\text{C} + \frac{1 \,^{\circ}\text{C}}{129,75 \,\Omega - 1239,37 \,\Omega} \cdot (129,53 - 129,37) = 76,42 \,^{\circ}\text{C}$$

4.2.2 Grenzabweichungen

Bei den Grenzabweichungen unterscheidet die DIN EN 60 751 zwei Toleranzklassen:

Klasse A: $\Delta t = \pm (0,15 + 0,002 \cdot t)$ Klasse B: $\Delta t = \pm (0,30 + 0,005 \cdot t)$ $t = \text{Temperatur in } ^{\circ}\text{C (ohne Vorzeichen)}$

Die Klasse A gilt für Temperaturen von -200 ... +650°C und nur für Thermometer mit Drei- und Vierleiteranschluss. Für die Klasse B gilt der gesamte Definitionsbereich von -200. ... +850°C.

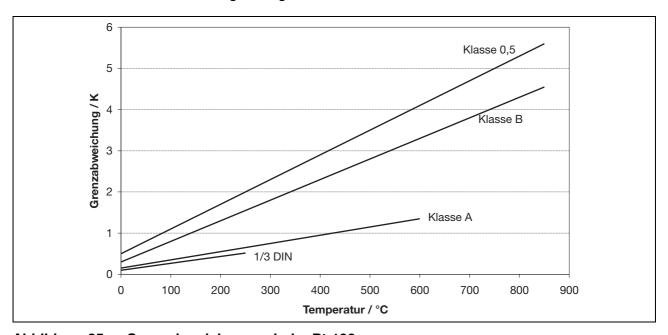


Abbildung 25: Grenzabweichungen beim Pt 100

Beispiel:

Für einen Messwiderstand Pt 100 der Klasse B ist die Messtoleranz bei einer Messtemperatur 200°C gesucht:

t = $\pm (0.30 + 0.005 \cdot 200)$ °C, = $\pm (0.30 + 1)$ °C, = ± 1.3 °C.

4.2.3 Erweiterte Toleranzklassen

Häufig reichen die in der Norm vorgegebenen Toleranzklassen nicht aus, da im Zuge steigender Anforderungen an die Produktionsgüte auch die Ansprüche hinsichtlich der Messgenauigkeit ständig steigen. So entstehen Absprachen zwischen Kunden und Sensorherstellern, die gegenüber der Klasse B eingeschränkte Toleranzklassen entstehen lässt. Aber auch der umgekehrte Fall, bei dem erweiterte Toleranzklassen für den Anwender hinreichend sind, sind für viele Applikationen aus Kostengründen interessant. In diesem Zusammenhang sei ausdrücklich darauf hingewiesen, dass auch die Sensoren mit vergrößerter Toleranz nichts von den hervorragenden Eigenschaften der Platin-Messwiderstände einbüßen. So bleiben die Langzeitstabilität und Reproduzierbarkeit der Kennlinie sowie die Austauschbarkeit des Sensors in vollem Umfang erhalten. JUMO hat neben den beiden genormten Toleranzklasssen weitere Toleranzklassen definiert, um dem Anwender sowohl Sensoren höherer als auch niedrigerer Genauigkeit, angepasst an die jeweilige Applikation anbieten zu können.

Toleranz-	Geltungsbereich	Toleranz in K	Toleranz	
klasse			bei t = 0°C	t = 100°C
1/3 Klasse B	- 70 +250°C	±(0,10 K + 0,0017 x ltl)	±0,10K	±0,27K
Klasse A	-200 +600°C	±(0,15K + 0,0020 x ltl)	±0,15K	±0,35K
Klasse B	-200 +850°C	±(0,30K + 0,0050 x ltl)	±0,30K	±0,80K
Klasse 0,5	-200 +850°C	±(0,50K + 0,0060 x ltl)	±0,50K	±1,10K

Tabelle 16: Toleranzklassen von Widerstandsthermometern

Grundlage für die eingeschränkte Toleranzklasse 1/3 Klasse B ist die Standardklasse B, die gedrittelt wird. Zu beachten ist, dass der Geltungsbereich für diese Toleranzklasse generell auf -70 ... +250 °C festgelegt ist. Diese Einschränkung ist notwendig, da neben dem Nennwert auch der Kennlinienverlauf von Sensoren produktionstechnischen Schwankungen unterliegt. Bei der Klassifizierung der Sensoren in die einzelnen Klassen erfolgen die notwendigen Messungen in einem Temperaturbereich von 0 ... 100 °C. Da im Allgemeinen nur zwei Messpunkte herangezogen werden, kann zum einen nicht der Funktionsverlauf 2. Grades ermittelt werden. Darüber hinaus vergrössert sich die Messunsicherheit der Messungen durch die Extrapolation des Temperaturbereiches, sodass bei der 1/3 Klasse B der Geltungsbereich beschränkt ist. In diesem Zusammenhang sei angemerkt, dass der Funktions-Temperaturbereich eines Sensors oder konfektionierten Temperaturfühlers hiervon nicht beeinträchtigt wird, nur über den Geltungsbereich hinaus nicht mehr die eingeschränkte Toleranzklasse gilt bzw. bei Überschreiten der Grenzen die Einhaltung der Toleranz keine Gewähr geleistet wird.

4.3 Nickelwiderstände

Neben Platin wird in weitaus geringerem Umfang auch Nickel als Widerstandsmaterial verwendet. Nickel ist, verglichen mit Platin, deutlich kostengünstiger und weist einen fast doppelt so hohen Temperaturkoeffizienten auf (6,18 · 10⁻³°C⁻¹). Der Messbereich reicht allerdings nur von - 60 ... +250°C, da oberhalb +350°C eine Phasenumwandlung stattfindet. Der Nickelmesswiderstand ist erheblich weniger verbreitet als der Platinsensor. Seine Kenndaten sind in der DIN 43 760 (nicht mehr gültig) festgelegt; für den Zusammenhang zwischen Widerstand und Temperatur gilt:

Formel 22:

$$R(t) = R_0(1 + A \cdot t + B \cdot t^2 + C \cdot t^4 + D \cdot t^6)$$

Für die Koeffizienten gilt:

 $A = 0.5485 \cdot 10^{-2} \, ^{\circ}\text{C}^{-1}$

 $B = 0,665 \cdot 10^{-5} \, ^{\circ}C^{-2}$

Der Nennwert bei 0°C beträgt 100Ω.

 $C = 2.805 \cdot 10^{-11} \, ^{\circ}C^{-4}$

 $D = 2.111 \cdot 10^{-17} \, ^{\circ}C^{-6}$

Neben der Kennlinie nach DIN 43 760 existieren am Markt noch weitere herstellerspezifische Kennlinien.

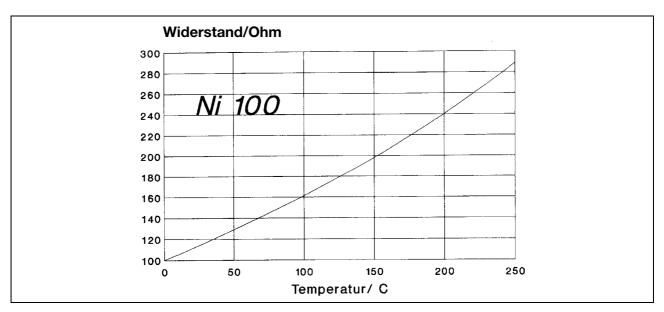


Abbildung 26: Kennlinie des Ni 100 nach DIN 43 760

4.3.1 Grenzabweichungen

Die Grenzabweichungen für den Nickelwiderstand sind wie folgt definiert:

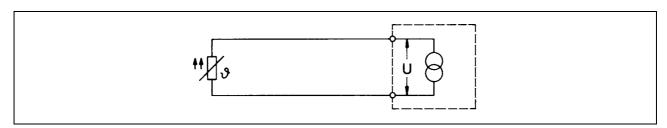
 $\Delta t = \pm (0.4 + 0.007 \cdot t)$ Für 0 bis 250°C,

 $\Delta t = \pm (0.4 + 0.028 \cdot t)$ Für -60 bis 0°C.

t = Temperatur in °C (ohne Vorzeichen).

Durch Festlegung dieser Toleranzklassen ergeben sich die gleichen Vorteile wie beim Pt 100-Sensor: Jederzeit kann ein Sensor durch einen anderen ersetzt werden, ohne dass ein Neuabgleich erforderlich wird. Der Anwendungsbereich der Ni 100-Sensoren findet sich häufig im Bereich Heizungs-, Klima- und Lüftungsbau.

4.4 Anschluss von Widerstandsthermometern


Beim Widerstandsthermometer ändert sich der elektrische Widerstand in Abhängigkeit von der Temperatur. Um das Ausgangssignal zu erfassen, wird der von einem konstanten Messstrom hervorgerufene Spannungsabfall gemessen. Für diesen Spannungsabfall gilt nach dem ohmschen Gesetz:

Formel 23:

$$U = R \cdot I$$

Um eine Erwärmung des Sensors zu vermeiden (Kapitel 4.7.3 "Eigenerwärmung"), sollte ein möglichst kleiner Messstrom gewählt werden. Man kann davon ausgehen, dass ein Messstrom von 1mA keine nennenswerte Beeinträchtigung hervorruft. Dieser Strom bewirkt bei einem Pt 100 bei 0°C einen Spannungsabfall von 0,1 V. Diese Messspannung muss nun durch die Anschlussleitungen möglichst unverfälscht an den Ort der Anzeige oder Auswertung übertragen werden. Es werden dabei vier Anschlusstechniken unterschieden:

4.4.1 Zweileiter-Technik

Abbildung 27: Zweileiterschaltung

Die Verbindung zwischen Auswertelektronik und Thermometer erfolgt mit einer zweiadrigen Leitung. Wie jeder andere elektrische Leiter besitzt auch diese einen Widerstand, der dem Widerstandsthermometer in Reihe geschaltet ist. Damit addieren sich die beiden Widerstände, es kommt zu einer systematisch höheren Temperaturanzeige. Bei größeren Entfernungen kann der Leitungswiderstand einige Ohm betragen und eine beachtliche Verfälschung des Messwertes verursachen.

Beispiel:

Leitungsquerschnitt: 0,5 mm², Leitungsmaterial: Kupfer,

spez. Widerstand: $0,0175\Omega \text{ mm}^2 \text{ m}^{-1}$,

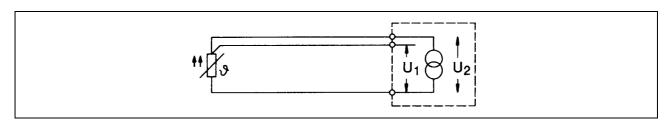
Leitungslänge: 100m, entspricht doppelte Litzenlänge (Schleife), also 200m.

Formel 24:

R = 0,0175
$$\Omega$$
 mm²m⁻¹ $\cdot \frac{2 \cdot 100 \text{ m}}{0.5 \text{ mm}^2} = 7\Omega$ $\frac{7.0 \Omega}{0.38 \Omega} = 18.4 \text{ °C}$

 6.8Ω entsprechen bei einem Pt 100 einer Temperaturerhöhung von 18.4° C. Um diesen Fehler zu ver-meiden, kompensiert man den Leitungswiderstand auf elektrischem Wege: Die Eingangsschaltung solcher Geräte ist dabei so ausgelegt, dass immer von einem Leitungswiderstand von 10Ω ausge-gangen wird. Beim Anschluss des Widerstandsthermometers wird ein Abgleichwiderstand in eine der Messleitungen geschaltet und der Sensor zunächst durch einen $100,00\Omega$ -Widerstand ersetzt. Nun wird der Abgleichwiderstand so lange verändert, bis am Gerät 0° C angezeigt werden. Der Abgleichwiderstand bildet dann zusammen mit dem Leitungswiderstand 10Ω . Wegen dieser

JUMO, FAS 146, Ausgabe 2007-01


vergleichsweise aufwändigen Abgleichsarbeiten und des nicht erfassten Temperatureinflusses auf die Messleitung ist die Zweileitertechnik stark rückläufig.

In der folgenden Tabelle ist der Widerstand für eine 10m lange Anschlussleitung (Hin- und Rückleitung) aus Kupfer aufgeführt.

Leitungsquerschnitt/mm ²	0,14	0,22	0,5	0,75	1,5
R_{Ltg}/Ω	2,55	1,62	0,71	0,48	0,24

Tabelle 17: Widerstand einer 10m langen Kupfer-Anschlussleitung in Abhängigkeit vom Leitungsquerschnitt

4.4.2 Dreileiter-Technik

Abbildung 28: Dreileiterschaltung

Um die Einflüsse der Leitungwiderstände und deren temperaturabhängige Schwankungen zu minimieren, wird statt der oben erläuterten Anschlusstechnik meist eine Dreileiterschaltung verwendet. Hierbei wird eine zusätzliche Leitung zu einem Kontakt des Widerstandsthermometers geführt. Es bilden sich somit zwei Messkreise, von denen einer als Referenz genutzt wird. Durch die Dreileiterschaltung lässt sich der Leitungswiderstand sowohl in seinem Betrag als auch in seiner Temperaturabhängigkeit kompensieren. Voraussetzungen sind allerdings bei allen drei Adern identische Eigenschaften und gleiche Temperaturen, denen sie ausgesetzt sind. Da dies in den meisten Fällen mit genügender Genauigkeit zutrifft, ist die Dreileiter-Technik heute am verbreitesten. Ein Leitungsabgleich ist nicht erforderlich.

4.4.3 Vierleiter-Technik

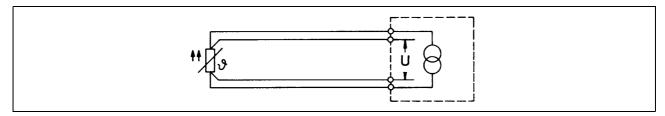


Abbildung 29: Vierleiterschaltung

Eine optimale Anschlussmöglichkeit für Widerstandsthermometer bietet die Vierleiter-Technik. Das Messergebnis wird weder von den Leitungswiderständen noch von ihren temperaturabhängigen Schwankungen beeinträchtigt. Ein Leitungsabgleich ist nicht erforderlich.

Über die Zuleitungen wird das Thermometer mit dem Messstrom gespeist. Der Spannungsabfall am Messwiderstand wird über die Messleitungen abgegriffen. Liegt der Eingangswiderstand der nachgeschalteten Elektronik um ein Vielfaches höher als der Leitungswiderstand, ist dieser zu vernachlässigen. Der so ermittelte Spannungsabfall ist dann unabhängig von den Eigenschaften der Zuleitungen.

Sowohl bei der Drei- als auch bei der Vierleiter-Technik muss beachtet werden, dass nicht immer die Schaltung bis zum Messelement geführt ist. Häufig ist die Verbindung des Sensors zum Anschlusskopf in der Armatur, die so genannte Innenleitung, in Zweileiter-Technik ausgeführt. Dadurch ergeben sich - wenn auch in wesentlich geringerem Ausmaß - für diese Verbindung die bei der Zweileiter-Technik geschilderten Probleme. Der Gesamtwiderstand, der sich aus der Summe der Widerstandswerte von Innenleitung und Messwiderstand ergibt, wird nach DIN 16 160 als Thermometerwiderstand bezeichnet.

4.4.4 Zweileiter-Messumformer

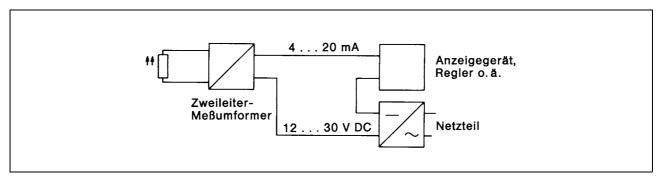


Abbildung 30: Zweileiter-Messumformer

Um die geschilderten Probleme der Zweileiter-Technik zu umgehen und dennoch auf mehradrige Leitungen verzichten zu können, verwendet man Zweileiter-Messumformer: Der Messumformer wandelt das Sensorsignal in ein normiertes, temperaturlineares Stromsignal von 4 ... 20mA um. Die Versorgung des Messumformers geschieht ebenfalls über die beiden Anschlussleitungen, man bedient sich hierbei eines Ruhestroms von 4 mA. Wegen des angehobenen Nullpunkts wird auch von "life zero" gesprochen. Der Zweileiter-Messumformer bietet weiterhin den Vorteil, durch die Verstärkung des Signals dessen Störempfindlichkeit bedeutend zu verringern. Bei der Platzierung des Messumformers gibt es zwei Bauformen. Da zur Verringerung der Störanfälligkeit des Signals die Strecke des unverstärkten Signals möglichst kurz gehalten werden soll, kann er direkt im Thermometer in dessen Anschlusskopf montiert sein. Dieser optimalen Lösung widersprechen mitunter jedoch konstruktive Gegebenheiten oder die Tatsache, dass im Fehlerfall der Messumformer unter Umständen schwer erreichbar sein kann. In diesem Fall benutzt man einen Messumformer zur Tragschienenmontage im Schaltschrank. Den Vorteil des besseren Zugriffs erkauft man sich dabei jedoch mit einer längeren Strecke, die das unverstärkte Signal zurücklegen muss.

Zweileiter-Messumformer werden sowohl für Widerstandsthermometer als auch für Thermoelemente gefertigt.

4.5 Bauformen

Die Bauform des Platinsensors unterscheidet sich nach dem Einsatzgebiet; prinzipiell unterscheidet man drahtgewickelte und Dünnschichtwiderstände. Während Dünnschichtwiderstände immer aus einer auf ein Keramiksubstrat aufgebrachten Platinschicht bestehen, kann bei drahtgewickelten Widerständen der Drahtwendel in Glas eingeschmolzen oder in Pulver eingebettet sein. Auch ungeschützte, freitragende Wendel sind möglich, jedoch finden diese wegen ihrer mechanischen Empfindlichkeit nur bei Präzisionsinstrumenten für den Laboreinsatz Anwendung.

4.5.1 Keramikwiderstände

In einem Keramikrohr befinden sich zwei Bohrungen, in die eine Platinwendel eingelegt ist. Zur Fixierung der Wicklung und zum besseren Wärmeübergang werden die Bohrungen mit Aluminiumoxidpulver gefüllt. Ein Glaspfropfen an beiden Enden verschließt die Bohrungen und fixiert die Anschlussdrähte.

Der Durchmesser dieser Messwiderstände variiert von 0,9 ... 4,5mm, seine Länge von 7 ... 30mm. Keramische Widerstände finden Anwendung im Temperaturbereich von -200 ... +800°C.

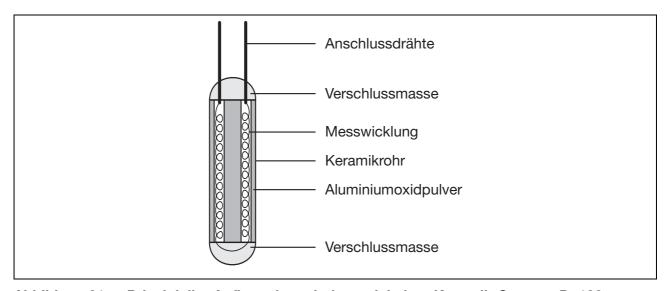


Abbildung 31: Prinzipieller Aufbau eines drahtgewickelten Keramik-Sensors Pt 100

Durch den gewählten Innenaufbau entsteht kein schlüssiger Materialkontakt zwischen Al₂O₃-Pulver und Platindraht. Bei Temperaturänderungen kann sich der Platinwendel somit frei ausdehnen und wird nur geringfügig belastet. Somit ergibt sich eine sehr hohe Langzeitstabilität. Untersuchungen an Mantel-Widerstandsthermometern mit solchen drahtgewickelten Messwiderständen zeigen in einem Temperaturbereich von 0°C bis 200°C einen Stabilitätswert von kleiner 10mK; bei Einsatz bis 400°C kleiner 25mK. Hierbei ist anzumerken, dass bei Einsatz solcher Thermometer mindestens eine jährliche Rekalibrierung erfolgt [17].

4.5.2 Glaswiderstände

Bei dieser Bauform werden zwei Platindrähte bifilar auf einen Glasstab aufgewickelt, in das Glas eingeschmolzen und mit Anschlussdrähten versehen. Nachdem die Drahtwicklung auf den Nennwert abgeglichen wurde, wird ein Mantelrohr über den Glasstab geschoben und beide miteinander verschmolzen. Hierdurch ist der Platindraht hermetisch dicht eingeschlossen. Da der Draht vom Glas komplett umgeben ist, sind diese Sensoren sehr sicher gegenüber Erschütterungen. Der verwendete Draht weist einen Durchmesser von 17 ... 30 µm auf. Die Länge des Messwiderstandes liegt zwischen 7 ... 55 mm, bei einem Durchmesser von 0,9 ... 4,8 mm.

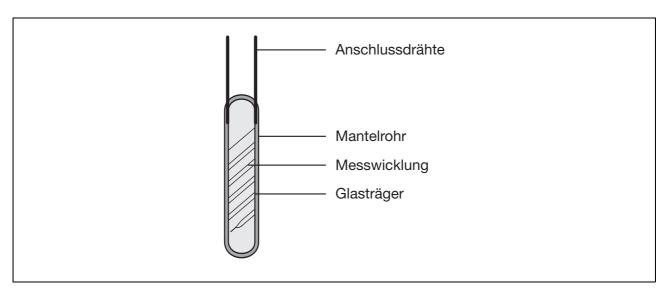


Abbildung 32: Prinzipieller Aufbau eines drahtgewickelten Glas-Pt 100

Der Temperaturbereich der Glaswiderstände erstreckt sich von -200 ... +400°C. Der Vorteil dieser Bauform liegt darin begründet, dass der Sensor direkt im Messmedium eingesetzt werden kann und nicht notwendigerweise ein äußeres Schutzrohr benötigt. Hierdurch ergeben sich kurze Ansprechzeiten der Thermometer. Die Erschütterungsfestigkeit des Glaswiderstandes ist höher als die eines Keramikwiderstandes.

Als besondere Bauform werden diese Sensoren mit einer Verlängerung aus Glas gefertigt, wodurch ein chemisch sehr resistentes Thermometer vorliegt, das bevorzugt in der Chemie (Labor) angewandt wird. Der Sensor kann direkt und ohne den Wärmeübergang verschlechternde Schutzhülsen auch in aggressiven Medien eingesetzt werden. Die erreichten Ansprechzeiten sind hervorragend.

Eine weitere Bauform zu einfachen Glaswiderstand bildet der doppelte Pt 100, bei dem zwei Wicklungen bifilar nebeneinander liegen. Solche Sensoren finden dort Anwendung, wo zwei getrennte Messkreise die Temperatur am gleichen Ort messen. Andere Anwendungsfälle sind der Aufbau redundanter Systeme, bei denen im Fehlerfall ohne Austausch des Sensors einfach die zweite Wicklung benutzt wird.

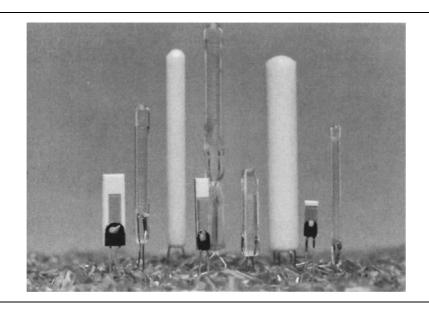


Abbildung 33: Glas-, Keramik- und Chipwiderstände

4.5.3 Folienfühler

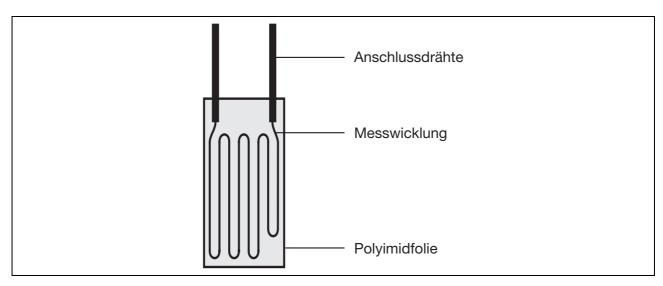


Abbildung 34: Prinzipieller Aufbau eines drahtgewickelten Folien-Pt 100

Zwischen zwei Polyimidfolien wird ein Platinwiderstandsdraht mit einem Durchmesser von rund 30 µm in eine Klebemasse eingebettet. Durch die flache Ausführung von rund 0,17 mm Dicke und die hohe Flexibilität dient der Sensor zur Oberflächenmessung an Rohrleitungen oder wird auch in Transformatorenwicklungen eingesetzt. Der Temperaturbereich beläuft sich auf -80 ... +230°C.

4.5.4 Dünnschichtsensoren

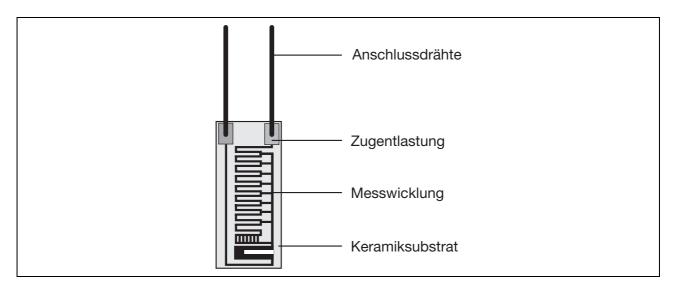


Abbildung 35: Prinzipieller Aufbau eines Dünnschicht-Pt 100

Aus der Halbleiterindustrie abgeleitete Verfahren werden zur Produktion dieser Bauform verwandt. Auf einem Aluminiumoxid-Substrat wird eine ca. 0,5 ... 1µm dicke Platinschicht gesputtert oder aufgedampft. Anschließend wird in einem Lithografieprozess oder mittels Laserstrahl die Platinschicht mäanderförmig strukturiert und durch Laser abgeglichen. Eine danach aufgebrachte Glasschicht von ca. 10 ... 15µm schützt das Platin.

Über aufgeschweißte Anschlussdrähte, die zusätzlich mit einem Glastropfen fixiert werden, wird die elektrische Verbindung zur Widerstandsbahn hergestellt. Die Einsatztemperaturen liegen, abhängig von der Bauform, zwischen -50 ... +400(600) °C.

Auf dem Markt gibt es eine breite Palette von Bauformen, auf die der Anwender zurückgreifen kann, um einen passenden Sensor auszuwählen. Die Standardbauformen sind in Abbildung 36: Verschiedene Bauformen von Chipwiderständen dargestellt:

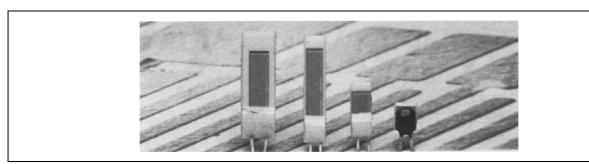


Abbildung 36: Verschiedene Bauformen von Chipwiderständen

Bei kurzen Bauformen mit 5 bzw. 2,5mm Länge lassen sich sowohl Pt 100- als auch Pt 500- und Pt 1000-Dünnschichtwiderstände herstellen.

Allen Dünnschichtsensoren gemeinsam sind die kurze Ansprechzeit (in Wasser unter 1s) und geringe thermische Masse, wodurch die zu messende Umgebung eine vernachlässigbare Beeinflussung erfährt.

Der Dünnschichtmesswiderstand verbindet die günstigen Eigenschaften eines Platinsensors wie Austauschbarkeit, Langzeitstabilität, Reproduzierbarkeit und großer Temperaturbereich mit den Vorteilen der Großserienfertigung.

Die bei den drahtgewickelten Sensoren beschriebenen Bauformen dagegen erfordern derzeit immer noch einen hohen manuellen Anteil an der Fertigung, was sich im Preis widerspiegelt. Diese höheren Kosten des Platinsensors waren bisher trotz seiner eindeutigen Vorteile für den geringen Einsatz in Branchen wie der Automobilindustrie, der Klimatechnik oder Haushaltsgeräteindustrie verantwortlich.

4.6 Langzeitverhalten von Widerstandsthermometern

Ein sehr wichtiges Thema beim Einsatz von Temperaturfühlern betrifft die Langzeitstabilität. Die Genauigkeit eines Fühlers muss über seine gesamte Einsatzdauer gesichert sein, um kontinuierlich die gewünschte Anzeigegenauigkeit zu Gewähr leisten.

Die Einsatzbedingungen und konstruktiven Merkmale beeinflussen in starkem Maße die Stabilität. Pauschale Angaben wie etwa 0,05 % p. a. sind wenig informativ, wenn keine Aussagen über Belastungen getroffen werden. Eine zyklische Temperaturbelastung zwischen oberer und unterer Temperaturgrenze beansprucht alle Komponenten des Fühlers bedeutend mehr, als eine kontinuierliche Belastung. Eine sehr hohe Stabilität, auch unter Temperaturwechselbelastungen, zeigen Keramiksensoren, bei denen sich durch das Einbetten der Drahtwicklung in ein Pulver nur eine schwache mechanische Kopplung ausbildet. Der Widerstandsdraht kann sich gegenüber den anderen Materialien frei ausdehnen. Mechanische Spannungen, die eine Änderung der Kristallstruktur und damit auch des elektrischen Widerstandes hervorrufen, werden unterbunden.

Stabilitätsuntersuchungen an drahtgewickleten Keramik-Sensoren in einem Temperaturbereich von -196 ... +600 °C zeigen Stabilitätswerte von ca. 0,1 K [17].

Bei Ausführungen über 600°C wurde ein Belastungstest über den gleichen Zeitraum zwischen +900 ... -196°C durchgeführt. Hierbei zeigt sich bereits eine Verdoppelung des Stabilitätswertes auf 0,2K vom Nennwert.

Bei Glassensoren ist der Platindraht im Glas eingeschlossen. Durch die starke mechanische Kopplung ergibt sich auf Grund der unterschiedlichen Ausdehnungskoeffizienten von Glas und Platin eine höhere Belastung des Drahtes. Bei der Herstellung des Sensors muss darauf geachtet werden, dass der Temperaturausdehnungskoeffizient des verwendeten Glases möglichst gut mit dem des Platins übereinstimmt. Trotzdem kommt es noch zu mechanischen Spannungen während der Fertigung, die eine Langzeitdrift induzieren. Daher wird durch einen künstlichen Alterungsprozess der Sensor stabilisiert.

Ein anderer Effekt, der stark von der Belastungsgrenze des Sensors abhängt, ist die Hysterese. Hierunter ist die reversible Wertänderung des Nennwertes R_0 zu verstehen, die davon abhängt, ob die vorherige Belastung im positiven oder negativen Temperaturbereich stattgefunden hat. Bei einem Versuch mit Glassensoren Pt 100 bildete sich eine Hysterese von 0,1K aus, wenn die Temperaturbelastung zwischen -196 ... +300 °C wechselte.

Ebenso wie bei Glassensoren liegt bei den Dünnschichtsensoren eine hohe mechanische Kopplung der temperatursensitiven Platinschicht und des darunter befindlichen Keramiksubstrates vor. Sind die Ausdehnungskoeffizienten beider Materialien nicht vollständig einander angepasst, zwingt die Keramik der etwa 1 mm dicken Platinschicht ihre Bewegung auf. Die Folge sind Änderungen in der Kristallstruktur und somit verbunden Änderungen des Widerstandes. Da der Ausdehnungskoeffizient seinerseits temperaturabhängig ist, ist es sehr schwierig, über den gesamten Temperaturbereich des Sensors einen Gleichlauf von Substrat und Platinschicht zu erreichen. Durch intensive Forschung und Entwicklung weisen Dünnschichtsensoren heute sehr gute Langzeitstabilitäten auf. Speziell aus Applikationen bis 150°C hat sich gezeigt, dass nach fünf Jahren Einsatz eine Änderung des Nennwertes von 0,15 ... 0,20 K einstellt.

An dieser Stelle sei noch der Hinweis angebracht, dass die Langzeitstabilität eines Thermometers nicht alleine von der Qualität des eingesetzten Temperatursensors abhängt, sondern auch von den weiteren Komponenten wie Isolationsmaterialien, Verbindungstechniken, Zuleitungsmaterialien etc.

4.7 Fehler bei Widerstandsthermometern

4.7.1 Einfluss der Messleitung

Bei Messungen mit Widerstandsthermometern können konstruktiv oder messtechnisch bedingte Einflüsse das Messergebnis verfälschen. Im Folgenden werden die wichtigsten Effekte, die zu Fehlmessungen führen können, erläutert:

Wie schon an anderer Stelle beschrieben, geht der Leitungswiderstand in die Messung wie ein zum Sensor in Reihe geschalteter Widerstand ein. Gerade bei größeren Anlagen und damit verbundenen längeren Anschlusswegen kann der Leitungswiderstand in der Größenordnung des Messwiderstandes liegen. Daher ist die Kompensation des Leitungswiderstandes zwingend erforderlich, die meist in einer Nullpunktverschiebung des angeschlossenen Gerätes besteht. Eine derartige Kompensation berücksichtigt jedoch nicht die temperaturabhängige Änderung des Leitungswiderstandes. Unterliegt die Anschlussleitung wechselnden Temperaturen, führt dies zu mehr oder weniger deutlichen Fehlmessungen. Dieser Effekt tritt jedoch erst bei größeren Leitungswiderständen zu Tage, das heißt bei großen Leitungslängen mit kleinen Drahtquerschnitten.

Kupfer besitzt nahezu den gleichen Temperaturkoeffizienten wie Platin. Der durch den Temperatureinfluss auf eine Messleitung in Zweileitertechnik entstehende Messfehler lässt sich daher leicht abschätzen:

Er entspricht dem prozentualen Anteil am Widerstandswert des Sensors, multipliziert mit den Temperaturschwankungen, denen die Fühlerleitung ausgesetzt ist.

Beispiel: Welcher temperaturabhängige Messfehler wird bei einem Zweileiteranschluss eines Pt 100 durch eine 20m lange Kupferleitung mit 0,22mm² verursacht, wenn diese einem Temperatureinfluss von -20 ... +60°C ausgesetzt ist?

Der Leitungswiderstand beträgt $3,1\,\Omega$. Dies entspricht $2,6\,\%$ des Widerstandswertes vom Pt 100 bei $50\,^\circ$ C. Die Messleitung ist einer Temperaturdifferenz von $80\,\text{Kelvin}$ ausgesetzt; der hierdurch verursachte Messfehler beträgt ungefähr $0,0026\cdot 80\,\text{K} = 2,1\,\text{Kelvin}$. Hierbei wurde vereinfachend von einem gleichen Temperaturkoeffizienten und dem Widerstand des Pt 100 bei $50\,^\circ$ C ausgegangen. Die durch diese Vereinfachung verursachten Fehler sind jedoch so gering, dass sich dieses einfache Verfahren recht gut zur Abschätzung des bei der Zweileitertechnik zu erwartenden Messfehlers eignet.

4.7.2 MangeInder Isolationswiderstand

Bedingt durch einen endlichen Widerstand in den Zuleitungen sowie im Isolationsmaterial, in das der Sensor mit seinen Anschlussdrähten eingebettet ist, kann bei schlechten Isolationsmaterialien ein weiterer Messfehler auftreten, der eine zu niedrige Temperaturanzeige bewirkt. Bezogen auf ein Pt 100-Thermometer ergibt sich bei einem Isolationswiderstand von $100 \mathrm{k}\Omega$ ein Anzeigefehler von 0,25K bzw. bei 25kΩ von 1 Kelvin. Wegen der Temperaturabhängigkeit der Isolationswiderstände kann der durch sie verursachte Fehler mit den Messbedingungen variieren. Speziell bei keramischen Isolationsmaterialien sinkt der Widerstand mit zunehmender Temperatur. Bedingt durch die Maximaltemperatur von ca. 600°C fällt der Effekt bei Platinmesswiderständen jedoch kaum ins Gewicht. Eine erheblich größere Wirkung hat in die Isolation eindringende Feuchtigkeit, die deutliche Messfehler zur Folge haben kann. Bei Messwiderständen muss daher stets auf Feuchtigkeit im Sensor, wie auch in den Isolationsmaterialien zwischen den Anschlussleitungen geachtet werden; die Sensoren sind daher im Allgemeinen durch Glasur-Überzüge oder andere Versiegelungen hermetisch abgedichtet. Der Messeinsatz selbst ist ebenfalls abgedichtet, um ein Eindringen von Feuchtigkeit in das Sondenrohr zu vermeiden. Messeinsätze können unbedenklich ausgetauscht werden, da sie eine geschlossene Einheit bilden. Bei Reparaturen von Fühlern ohne Messeinsatz dagegen muss unbedingt auf eine zuverlässige Abdichtung geachtet werden.

4.7.3 Eigenerwärmung

Um das Ausgangssignal eines Widerstandsthermometers zu messen, muss der Sensor von einem Strom durchflossen werden. Dieser Messstrom erzeugt eine Verlustleistung und somit Wärme am Sensor. Es kommt zu einer höheren Temperaturanzeige. Die Eigenerwärmung hängt von verschiedenen Faktoren ab, unter anderem davon, in welchem Maße die erzeugte Verlustleistung vom Messmedium abgeführt werden kann. Wegen des Zusammenhanges für die elektrische Leistung als $P = R \cdot l^2$ ist der Effekt auch vom Grundwert des Messwiderstandes abhängig: Bei gleichem Messstrom wird ein Pt 1000-Widerstand zehn Mal stärker erwärmt als ein Pt 100. Außerdem bestimmen Konstruktionsmerkmale sowie die Wärmeleitung und -kapazität und die Größe des Thermometers den durch die Eigenerwärmung verursachten Messfehler. Die Wärmekapazität und die Strömungsgeschwindigkeit des Messmediums beeinflussen den Effekt ebenfalls in starkem Maße. Die Thermometerhersteller geben häufig einen Selbsterwärmungskoeffizienten an, der ein Maß für die Temperaturerhöhung durch eine definierte Verlustleistung im Sensor ist. Derartige kalometrische Messungen werden unter festgelegten Bedingungen durchgeführt (in Wasser mit 0,5 m · s $^{-1}$ bzw. Luft mit 2 m · s $^{-1}$). Die Angaben haben jedoch eher theoretischen Charakter und dienen als Vergleichswerte verschiedener Konstruktionsvarianten.

In den meisten Fällen wird der Messstrom vom Gerätehersteller auf 1 mA festgelegt, da sich dieser Wert als praxistauglich erwiesen hat. Für einen Pt 100-Widerstand bedeutet dies eine Verlustleistung von einem zehntausendstel Watt. Befände sich beispielsweise in einem völlig wärmeisolierten, abgeschlossenen Behälter mit 10cm³ Luft ein Pt 100-Widerstand und dem genannten Messstrom von einem Milliampere, so hätte dieser nach einer Stunde die Luft um 39K erwärmt. Bei strömenden Gasen oder Flüssigkeiten ist der Effekt durch die um ein Vielfaches größere abgeführte Wärmemenge weniger deutlich.

Bei Langzeitmessungen in verdünnten, ruhenden Gasen kann also diese geringe Verlustleistung zu Messfehlern führen. In diesen Fällen muss die Eigenerwärmung unter den Einsatzbedingungen vor Ort gemessen werden. Hierzu wird bei verschiedenen Stromstärken I die Temperatur gemessen, unter der Voraussetzung einer konstanten Temperatur des Messmediums. Der Eigenerwärmungskoeffizient E ergibt sich wie folgt:

Formel 25:

$$E = t/(R \cdot I^2)$$

Mit t = (angezeigte Temperatur) - (Temperatur des Mediums)

R = Widerstand des Thermometers I

I = Messstrom

Mit Hilfe des Erwärmungskoeffizienten lässt sich wiederum der maximale Messstrom bestimmen, wenn ein Messfehler t zugelassen wird.

Formel 26:

$$I = (t/E \cdot R)^{1/2}$$

4.7.4 Parasitäre Thermospannungen

Auch bei der Temperaturmessung mit Widerstandsthermometern tritt der Effekt der Thermospannungen auf, hier allerdings als recht unerwünschter Nebeneffekt. Wie in Kapitel 3.1 "Der thermoelektrische Effekt" dargestellt, wird an der Verbindungsstelle zweier unterschiedlicher Metalle eine Thermospannung erzeugt. Derartige Metallübergänge treten beim Widerstandsthermometer an den Zuleitungen auf: so bestehen die Anschlussdrähte der Sensoren vielfach aus Silber, die - z. B. als Innenleitung - mit Kupfer oder Nickel verlängert werden.

Im Normalfall kann davon ausgegangen werden, dass sich beide Kontaktstellen auf der gleichen Temperatur befinden, und sich die entstehenden Thermospannungen somit aufheben. Tatsächlich können sich aber auf Grund unterschiedlicher Wärmeableitung nach außen unterschiedliche Temperaturen einstellen; die so entstehende Thermospannung wird von der Auswertelektronik als Spannungsabfall, verursacht durch eine Widerstandsänderung, interpretiert, und es kommt zu einem falschen Messwert. Je nach dem Vorzeichen der entstehenden Thermospannung ist ein zu hoher oder zu niedriger Wert möglich. Der Betrag des hierdurch verursachten Fehlers ist stark von den Eigenschaften der Auswertelektronik abhängig, namentlich davon, wie eine Spannung als Temperatur ausgewertet wird. Wird ein Pt 100-Sensor mit einem Messstrom von 1mA betrieben, so entspricht $1\mu V$ parasitäre Thermospannung $1m\Omega$. Bei $20\mu V$ ensteht bereits ein Fehler von $20m\Omega$, das einem Temperaturwert von ca. $0,05\,K$ enspricht, also der halben Toleranzklasse $1/3\,DIN$ bei $0\,^{\circ}C$.

Eine einfache Methode zur Diagnostizierung eines durch derartige parasitäre Thermospannungen verursachten Messfehlers ist die Durchführung zweier Messungen mit umgekehrter Richtung des Messstromes. Je größer dabei die Differenz beider Messwerte ist, desto höher ist die in der Messkette erzeugte Thermospannung.

Wird ein Temperaturfühler mit der Temperatur T_0 in ein Messmedium mit der Temperatur T_1 gebracht, so tritt infolge des Temperaturgradienten ein Wärmestrom vom Bereich höherer Temperatur zum Bereich niedrigere Temperatur ein. Die treibende Kraft für den Wärmestrom ist die Temperaturdifferenz selbst. Mit fortschreitender Temperaturangleichung wird die Differenz kleiner und somit auch der Wärmestrom. Hierdurch verlangsamt sich auch die Temperaturangleichung. Bedingt durch die thermischen Widerstände im Fühler und seiner Massen wird die Temperaturanzeige nie sofort, sondern immer verzögert auf einen Temperatursprung oder kontinuierlichen Temperaturänderungen reagieren. Die hierdurch verursachte Messabweichung infolge des zeitlichen Nacheilens des Messwertes gegenüber der Messtemperatur wird als Nachlaufabweichung bezeichnet [16].

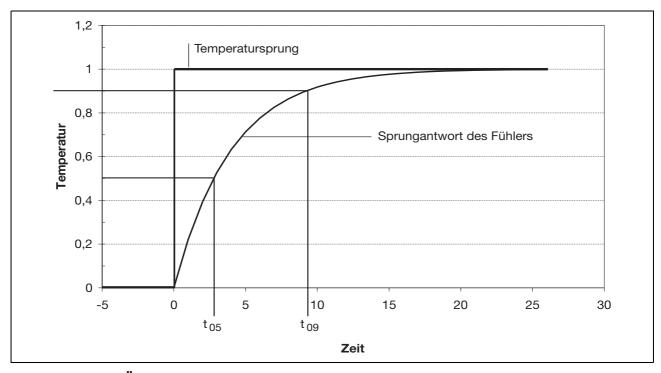


Abbildung 37: Übergangsfunktion nach einem Temperatursprung

Vereinfacht kann man sich den Fühler aus Widerständen und Energiespeichern zusammengesetzt denken. Vorhandene Isolationen bilden Widerstände, Massen bilden Energiespeicher. Oftmals haben die Komponenten des Fühlers beide Eigenschaften gleichzeitig:

Bei einem Glaswiderstand beispielsweise ist der Glaskörper gleichzeitig Energiespeicher und thermischer Widerstand.

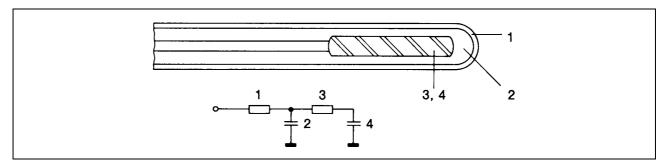


Abbildung 38: Thermische Widerstände in einem Fühler

Wie schnell der Fühler anspricht, hängt in erster Linie vom Verhältnis des thermischen Widerstandes zum Wärmespeichervermögen des Fühlers ab. Je größer dieser Wärmewiderstand ist, desto langsamer erwärmt sich der Fühler. Hat der Fühler nur eine geringe Wärmekapazität, kann er nur eine geringe Wärmemenge aufnehmen und erreicht somit schnell die Endtemperatur. Der Wärmewiderstand ist abhängig von der Materialart und von Stärke. Die Wärmekapazität setzt sich aus der spezifischen Wärmekapazität und der Fühlermasse zusammen.

Für einen einfachen Zylinder mit einem Radius R_I, umgeben von einer Schutzschicht mit vernachlässigbarer Wärmekapazität und einem Außenradius R_A folgt für die Zylindertemperatur T:

Formel 27:

$$T = T_{M} - [T_{M} - T(t = 0)] \cdot e^{\frac{t}{\tau}}$$

$$\tau = \frac{c \cdot \rho \cdot R_{I}^{2}}{2 \cdot \lambda} \cdot In \frac{R_{A}}{R_{I}}$$

Es bedeuten:

- c spezifische Wärmekapazität,
- ρ Dichte,
- λ Wärmeleitfähigkeit der Schutzschicht.

Da eine reale Fühler-Konstruktion nicht aus einem Material besteht, müssen die Wärmekapazität und Wärmeleitfähigkeiten der unterschiedlichen Komponenten berücksichtigt werden. Hieraus resultiert:

Formel 28:

$$T = T_{M} - [T_{M} - T(t = 0)] \cdot \left[\sum_{i=1}^{N} a_{i} \cdot e^{-\frac{t}{\tau_{i}}} \right]$$

Um kurze Ansprechzeiten zu erreichen, sollten daher immer möglichst kleine Sensoren und gut wärmeleitende, dünne Materialien verwendet werden. Besonders ungünstig wirken sich Luftspalten zwischen dem Messeinsatz und dem Schutzrohr aus, da alle Gase sehr schlechte Wärmeleiter sind. Hier schaffen Wärmeleitpasten bzw. Metallpulver Abhilfe, in die der Messeinsatz eingebettet wird.

Thermoelemente haben wegen der geringeren thermischen Masse grundsätzlich geringere Ansprechzeiten als Widerstandsthermometer. Dies trifft insbesondere für dünne Mantelthermoelemente zu. In den meisten Fällen wird der Unterschied jedoch durch die vergleichsweise große Wärmekapazität der Schutzarmatur völlig überdeckt (Tabelle 18: Gegenüberstellung von Ansprechzeiten verschiedener Ausführungsformen). Allgemein nimmt die Ansprechzeit mit wachsendem Schutzrohrdurchmesser zu. Es sollten daher möglichst dünnwandige Armaturen verwendet werden, sofern die mechanischen Gegebenheiten dies zulassen. Auch das Wärmeleitvermögen des Schutzrohrmaterials ist von großer Bedeutung. Kupfer und Eisen sind vergleichsweise gut wärmeleitend, Edelstahl und Keramik hingegen nicht.

Die Übergangsfunktion, d. h. der Verlauf des Messwertes bei sprungförmig veränderter Temperatur am Fühler, gibt hierüber Auskunft. Es gilt für die Übergangsfunktion U(t) nach einer sprunghaften Temperaturänderung:

Formel 29:

$$U(t) \; = \; \frac{T(t) - T(0)}{T_{\,M} - T(0)}$$

Da die Berechnung der Übergangsfunktion im Allgemeinen nicht hinreichend genau durchgeführt werden kann, wird zur Charakterisierung des dynamischen Verhaltens von Temperaturfühlern die Übergangsfunktion infolge eines Temperatursprungs aufgenommen. Der Temperaturfühler wird hierzu einem Temperatursprung durch schnelles Eintauchen in strömendes Wasser oder Luft mit bekannter Strömungsgeschwindigkeit und Temperatur ausgesetzt. Nach DIN EN 60 751 und VDI 3522 werden zum Vergleich von Thermometern folgende Messbedingungen empfohlen:

Wasser: (0.4 ± 0.05) m/s, Luft: (3.0 ± 0.30) m/s.

Zwei Zeiten (Einstelldauern) charakterisieren die Übergangsfunktion:

- Die Halbwertszeit t₀₅ die Zeit, um 50% des Temperatursprungs zu erreichen,

- Die Neunzehntelzeit t₀₉ die Zeit, um 90 % des Temperatursprungs zu erreichen.

Eine Zeit t, die zum Erreichen von 63,2 % des Endwertes erforderlich ist, wird wegen der möglichen Verwechslung mit der Zeitkonstanten einer e-Funktion nicht angegeben. Die Wärmeübergangsfunktion praktisch aller Thermometer weicht deutlich von einer solchen Funktion ab.

Wird die Ansprechzeit in einem anderen Medium benötigt, so lässt sich bei Kenntnis des Wärmeübergangkoeffizienten vom Messmedium auf das Schutzrohr-Material des Fühlers und den Ansprechzeiten in Luft und Wasser die Übergangszeit für das neue Medium berechnen [25].

Das Verhältnis von Neunzehntelzeit und Halbwertszeit beträgt angenähert 3:1 und ist stark vom Fühleraufbau abhängig. Vielfach werden vom Hersteller sowohl der Wert der Neunzehntel- wie auch der Halbwertszeit angegeben, da sich hieraus Rückschlüsse auf die Form der Übergangsfunktion eines Thermometers ziehen lassen. (Das Verhältnis von t_{09} zu t_{05} beträgt bei einer e-Funktion stets 3,01. Ein kleinerer Wert für t_{05} bei gleichem t_{09} bedeutet einen steileren Anstieg im ersten Teil der Kurve. Durch die Angabe beider Zeiten lässt sich somit qualitativ ermitteln, wie weit die Übergangsfunktion des Thermometers von einer e-Funktion abweicht.) Für den Anwender ist dies jedoch meist von untergeordneter Bedeutung, da hier die Absolutwerte für t_{05} oder t_{09} eher von Bedeutung sind, um abzuschätzen, welche zeitliche Verzögerung der Messwertaufnahme das verwendete Thermometer mit sich bringt.

Thermometerart	Durch-	Luft 1,0 m/s		6 Wasser 0,4 m/s		
	messer	t _{0,5} /s	t _{0,9} /s	t _{0,5} /s	t _{0,9} /s	
Messeinsatz	6mm	40 - 60	150 - 180	0,3 - 0,8	1,0 - 1,5	
mit Thermoelement nach DIN 43735	8mm	45 - 70	160 - 200	0,4 - 1,0	2,0 - 5,0	
im Schutzrohr nach DIN 43772 Form 2	9mm	80 - 100	280 - 350	6 - 8	25 - 40	
Form 3	11mm	100 - 120	320 - 400	7 - 9	30 - 50	
Form 4	24mm	320 - 400	900 - 1200	10 - 20	60 - 120	
mit keramischemSchutzrohr	11mm	100 - 150	320 - 500			
nach DIN 43724	15mm	180 - 300	500 - 800			
Mantelthermoelement Messstelle isoliert	3mm	20 - 25	70 - 90	0,4 - 0,6	1,0 - 1,2	
Mantelthermoelement Messstelle isoliert	1,5mm	8 - 12	28 - 40	0,11 - 0,18	0,35 - 0,5	

 Tabelle 18:
 Gegenüberstellung von Ansprechzeiten verschiedener Ausführungsformen

Wärmeableitfehler

Ein Thermometer wird selten im Bereich der Umgebungstemperatur eingesetzt. Liegt die Messtemperatur ober- oder unterhalb der Umgebungstemperatur, entsteht am Thermometer ein Temperaturgradient zwischen Messort und Umgebung. Hieraus resultiert eine Verfälschung der Temperaturanzeige: die Wärme fließt über das Schutzrohr oder durch den Innenaufbau des Thermometers vom wärmeren zum kühleren Ort. Weiterhin ist der Sensor mit der Zuleitung verbunden, durch die eine direkte metallische Verbindung zwischen Sensor und Umgebung gebildet wird, die als Wärmebrücke ebenfalls eine Verfälschung der Messtemperatur zur Folge hat. Gute elektrische Leiter haben stets auch einen geringen thermischen Widerstand; der Forderung nach einem geringen Widerstand der Zuleitungen steht demnach immer die Tatsache entgegen, dass sie einen großen Wärmeableitfehler bewirken. Weiterhin bestimmt die Konstruktion des Thermometers den Wärmeableitfehler: Der Sensor muss eine gute thermische Verbindung zum Schutzrohr bei gleichzeitiger thermischer Entkopplung von den Anschlussleitungen haben. Die Einbaulänge des Thermometers darf nicht zu gering gewählt werden, da ansonsten zu viel Wärme abgeführt werden kann. Die Eintauchtiefe (die Länge des Thermometerteiles, die der Messgröße ausgesetzt ist) hängt auch von der Art des Messmediums und der von ihr pro Zeiteinheit übertragenen Wärmemenge ab: Eine schnellströmende Flüssigkeit beispielsweise überträgt mehr Wärme und kann daher die Wärmeableitung des Thermometers besser kompensieren als ruhende Luft. Bei Messungen in Flüssigkeiten genügen allgemein 50% der Einbaulänge gegenüber Gas.

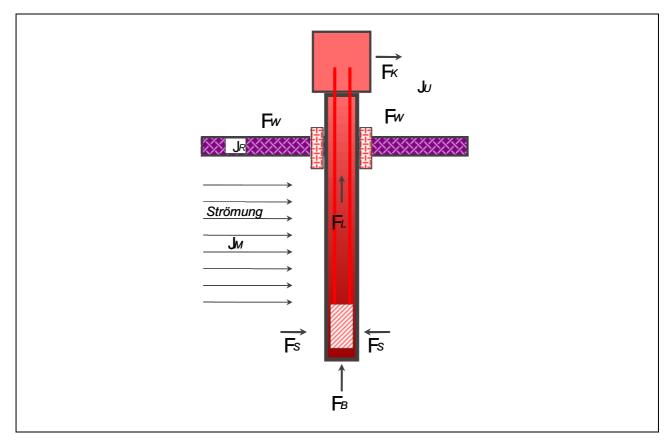


Abbildung 39: Entstehung des Wärmeableitfehlers

6 Wärmeableitfehler

In einem Beispiel sollen die Konstruktionseinflüsse auf den Wärmeableitfehler aufgezeigt werden:

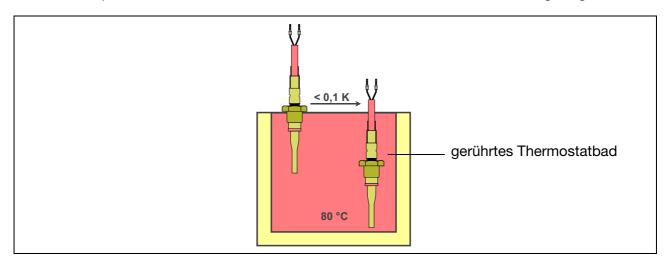


Abbildung 40: Messanordnung zur Bestimmung des Wärmeableitfehlers

Temperaturfühler, die bei der Wärmemengenmessung in Heizungssystemen eingesetzt werden, dürfen einen bestimmten Wärmeableitfehler bei der festgelegten Mindesteintauchtiefe nicht überschreiten. Zur Ermittlung der Mindesteintauchtiefe wird der Temperaturfühler in strömendes Wasser (0,15 m/s) mit einer um 60 K gegenüber der Umgebung höheren Temperatur bis zur Mindesteintauchtiefe eingetaucht. Bei weiterem Eintauchen in das Wasser darf der Anzeigewert des Temperaturfühlers um nicht mehr als 0,1 K steigen (Abbildung 40: Messanordnung zur Bestimmung des Wärmeableitfehlers).

Gerade bei kurzen Temperaturfühlern mit Einbaulängen unter 50mm wirft die Einhaltung des Grenzwertes von 0,1 K Probleme auf, die konstruktiv gelöst werden müssen. Die Anschlussleitung ist bis an den Sensor geführt und besteht aus Kupfer. Die thermische Adaption des Sensors an das Schutzrohr wird allgemein mit Wärmeleitpaste ausgeführt. Ohne besondere Maßnahmen zur thermischen Entkopplung tritt ein Ableitfehler von ca. 0,3 K auf. Eine Verbesserung um ca. 50 % bewirkt die Verringerung des Schutzrohrdurchmessers im Sensorbereich (Abbildung 41: *Optimierung des Wärmeableitfehlers durch konstruktive Verbesserungen*).

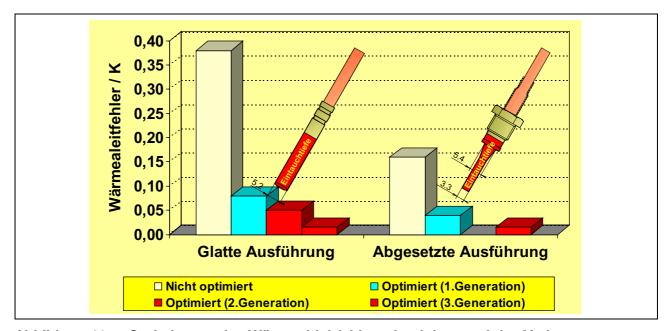


Abbildung 41: Optimierung des Wärmeableitfehlers durch konstruktive Verbesserungen

Mit 0,15K hält diese Fühlervariante jedoch den Prüfkriterien noch nicht stand. Erst eine thermische Entkopplung der Anschlussleitung und des Sensors reduziert den Ableitfehler auf 0,03K, was einer Verbesserung um den Faktor 10 gegenüber der ursprünglichen Variante entspricht. In der Abbildung 41: *Optimierung des Wärmeableitfehlers durch konstruktive Verbesserungen* sind in Abhängigkeit der kontinuierlichen Entwicklungsstufen die Reduzierung des Wärmeableitfehlers bei der vorgegebenen Mindeseintauchtiefe von 27,5mm für die typischen Standardbauformen dieser Applikation dargestellt.

6.1 Maßnahmen zur Verringerung des Wärmeableitfehlers

Nicht immer ist für jede Messaufgabe ein optimaler Fühler konstruktiv zu realisieren, bei dem das Messergebnis nicht durch den Wärmeableitfehler beeinträchtigt wird. Im Folgenden sind die wichtigsten Auswahlkriterien für einen Fühler hinsichtlich des Wärmeableitfehlers zusammengefasst.

Der Einsatz von zusätzlichen Tauchhülsen vergrößert den Wärmewiderstand zum eigentlichen Sensor. Zusätzlich fließt über die Tauchhülse Wärme nach außen ab. Direktmessungen sind daher vorzuziehen.

Beim Einsatz von Tauchhülsen kann sich zwischen Hülseninnenwand und Thermometer Staub ablagern, oder die Metalloberflächen oxidieren. Die Folge ist wiederum eine Verschlechterung der Wärmeübertragung bzw. eine Erhöhung des Wärmeableitfehlers.

Bei geringen Eintauchtiefen entsteht ein hoher Temperaturgradient zwischen Sensor und Umgebung, der einen großen Wärmestrom zur Folge hat. Es ist daher die größtmögliche Eintauchtiefe zu wählen.

Bei kleinen Strömungsgeschwindigkeiten oder ruhenden Medien findet nur ein minimaler Wärmeübergang auf das Thermometer statt. Es sollte daher immer ein Messort mit größerer Strömungsgeschwindigkeit ausgewählt werden.

Über die äußeren Teile eines Thermometers wie den Anschlusskopf oder die Verschraubung findet ein Wärmeaustausch mit der Umgebung statt. Äußere Teile des Thermometers sollten daher mit einer Wärmedämmung versehen werden, um den Wärmeverlust zu vermeiden. Außerdem wird durch eine starke Anströmung der äußeren Teile des Thermometers der Wärmeaustausch zur Umgebung gefördert. Sie sollten daher nicht dort installiert werden, wo die Umgebungsluft stark bewegt wird. Gegebenenfalls ist eine Montage im Windschatten vorgebauter Bleche oder dergleichen angebracht.

Bei guter Wärmeleitfähigkeit des Fühlers und großer Oberfläche außen liegender Teile wird die Wärmeübertragung zur Umgebung gefördert. Es sollten daher Thermometer eingesetzt werden, deren außen liegende Teile (Schutzrohr, Anschlusskopf) eine möglichst kleine Oberfläche besitzen. Die Wärmeleitfähigkeit des Schutzrohres in axiale Richtung kann durch eingefügte Kunststoffringe vermindert werden. Hierdurch lässt sich der Wärmeableitfehler deutlich verringern, ohne das Ansprechverhalten des Thermometers negativ zu beeinflussen.

6 Wärmeableitfehler

Kalibrierung und Eichung

7.1 Kalibrierung

Im Laufe der Betriebsdauer eines Thermometers ergeben sich infolge chemischer und mechanischer Einflüsse sowie Alterungserscheinungen wie Rekristallisationen und Diffusionen, Änderungen der Kennlinie gegenüber dem Auslieferungszustand. Auch geringfügig unterschiedliche Ausdehnungskoeffizienten des Träger- und des Widerstandsmateriales lassen die Kennlinie driften. Die Größe der Änderung hängt sehr stark von der Art dieser Belastungen und der Konstruktion selbst ab. Um eine Drift berücksichtigen und kompensieren zu können, muss das Thermometer in regelmäßigen Zeitabständen kalibriert werden. Eine derartige Kalibrierung bedeutet eine Überprüfung der angezeigten Temperaturwerte und gegebenenfalls die Festschreibung der Werte, um die sie von den tatsächlichen Messtemperaturen abweichen. (Der vielfach in diesem Zusammenhang genannte Begriff der Justierung bedeutet dagegen das Ergreifen erforderlicher Maßnahmen, um die Beträge der Messabweichung klein, zumindest kleiner als die Fehlergrenzen zu halten [16].)

Eine Kalibrierung ist gleich bedeutend mit einer individuell für jedes Thermometer geprüften und gemessenen Genauigkeit. Für die Langzeitstabilität dieser Werte kann allerdings vom Hersteller keine Garantie übernommen werden, da er die zukünftigen Einsatzgebiete bzw. -häufigkeiten und die damit verbundenen Belastungen auf das Thermometer nicht voraussehen kann. Eine Gültigkeitsdauer der Kalibrierung oder eine turnusmäßige Kontrolle durch die DKD sind nicht vorgeschrieben. Anfangs sollte ein Thermometer jährlich kalibriert werden und die Messergebnisse mit den vergangenen Daten verglichen werden. So wird im Lauf der Zeit eine Historie des Thermometers gewonnen, aus der dessen Stabilität ersichtlich wird. Bei einer für den Anwendungsfall genügenden Reproduzierbarkeit der Messdaten kann dann auf eine kürzere oder längere Wiederholungszeit der Kalibrierung geschlossen werden.

Die Frage nach dem Ablauf und der Genauigkeit einer Kalibrierung lässt sich nicht generalisierend beantworten. Es findet stets eine Abstimmung zwischen dem Anwender und der Kalibrierstelle statt, wobei Temperaturbereiche und Messpunkte festgelegt werden. Die Messgenauigkeit wird durch die Art der Messung und den Prüfling bestimmt.

Zur Kalibrierung wird das zu prüfende Thermometer auf eine bekannte Temperatur gebracht, der von ihm verursachte Wert (Widerstand, Thermospannung...) ermittelt und mit dem zu erwartenden Wert verglichen. Zur Temperierung werden je nach gefordertem Bereich flüssigkeitsgefüllte Thermostatbäder, Öfen oder Fixpunktzellen benutzt. Die Temperatur wird dabei mit einem Normalthermometer gemessen, wobei während der Vergleichsmessung darauf geachtet werden muss, dass kein Temperaturunterschied zwischen Prüfling und Normalthermometer entsteht. Bei einer Fixpunktzelle stellt sich die genau bekannte Temperatur des Phasenwechsels ein; ein Vergleich mit einem Normalthermometer entfällt. Fixpunktzellen bieten eine größere Genauigkeit; bei Tripelpunktzellen mit Wasser lässt sich eine Messunsicherheit unter 5mK erreichen.

Im Rahmen einer Kalibrierung wird sehr häufig auch der Isolationswiderstand bei Raum- bzw. Maxi-maltemperatur und nach einer Temperaturdauerbelastung gemessen. Die Thermometer werden beispielsweise 20 Stunden lang der Maximaltemperatur ausgesetzt. Aus der Nennwertänderung ergibt sich eine erste Abschätzung der Stabilität. Kalibriert werden können Thermoelemente, Widerstandsthermometer und darüber hinaus auch alle anderen Geräte zur Temperaturmessung. Zwar können Thermoelemente grundsätzlich mit der gleichen Toleranzbreite wie Widerstandsthermometer kalibriert werden, wegen ihrer höheren Drift wäre eine Angabe dieser Messunsicherheit aber wenig sinnvoll, da bereits nach kurzer Zeit die Gültigkeit der Kalibrierung, gleich bedeutend mit der Einhaltung der Messwerte innerhalb dieser engen Toleranzbänder, bezweifelt werden müsste. Der Kalibrierschein enthält daher häufig eine Empfehlung über die zu erwartende Drift und die damit verbundene Gültigkeitsdauer und -beschränkungen der kalibrierten Werte sowie die Referenzbedingungen, d. h. die Betriebsbedingungen, für welche die Messergebnisse gelten.

7 Kalibrierung und Eichung

Bei der Angabe der Messunsicherheit im Kalibrierschein muss berücksichtigt werden, dass nicht immer die kleinste angebbare Messunsicherheit des jeweiligen Kalibrierlabors auch angegeben wird. Bei der Bestimmung der Gesamtmessunsicherheit wird auch die Qualität des Kalibriergegenstandes, die Abschätzung der Stabilität und Reproduzierbarkeit des Prüflings mit einbezogen.

7.2 Der Deutsche Kalibrierdienst (DKD)

Durch die Globalisierung des Marktes, durch Qualitätsnormen wie die ISO 9000 und ein verschärftes Produkthaftungsgesetz werden Forderungen an die Dokumentation der Prozesse und die Überwachung der Messmittel gestellt. Hierzu kommen die erhöhten Kundenanforderungen nach hohem Qualitätsstandard ihrer Produkte.

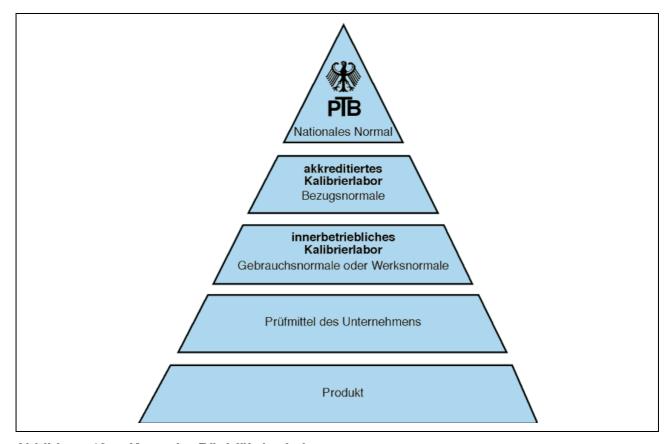


Abbildung 42: Kette der Rückführbarkeit

Eine besonders hohe Anforderung ergibt sich aus der Norm ISO 9000, die ein globales Konzept eines Qualitätssicherungssystemes beschreibt. Wenn ein Unternehmen nach dieser Norm zertifiziert wird, muss für die produktionsrelevanten Prüfmittel eine Rückführbarkeit auf die national anerkannten Normen/Standards vorhanden sein. Unter der Rückführbarkeit auf die nationalen Normale versteht man, dass beim Kontrollieren eines Prüfmittels die Messungen selbst dokumentierbar auf gesetzliche Normale zurückgeführt werden können. Für Deutschland legt die Physikalisch-Technische Bundesanstalt die nationalen Standards fest und vergleicht diese mit den Messergebnissen anderer Institute, um wichtige Größen wie die Temperatur weltweit gleicherart mit physikalischen Mitteln darstellen zu können.

Auf Grund der hohen Nachfrage nach derart kalibrierten Geräte reichen die staatlichen Stellen nicht aus, und es werden in der Industrie Kalibrierlabors eingerichtet, die von dieser auch getragen werden. Diese Labors sind dem Deutschen Kalibrierdienst angeschlossen und unterstehen messtechnisch der PTB. Damit wird Gewähr leistet, dass die in einem DKD-Labor eingesetzten

7 Kalibrierung und Eichung

Messmittel eindeutig auf die nationalen Standards rückführbar sind, und damit auch die dort eingesetzten Thermometer.

Im Rahmen einer DKD-Kalibrierung wird das Thermometer bei verschiedenen Temperaturen ausgemessen, wie bereits beschrieben. Aus den Messdaten werden die Kennlinienparameter berechnet und ein Zertifikat über die ausgeführten Messungen ausgestellt. Wichtig ist hierbei, dass das Thermometer kalibrierfähig im Sinne des DKD ist. Hierunter fällt insbesondere eine Prüfung der Stabilität des Nennwertes nach einer Belastung bei maximal zulässiger Einsatztemperatur sowie der Stabilität des Isolationswiderstandes. Erfüllt ein Thermometer diese Bedingungen nicht, so wird eine Kalibrierung abgelehnt.

Entwickelt wurde dieses Thermometer im Hinblick auf hohe Stabilität, um es auch in rauher Industrieumgebung einsetzen zu können. Denn insbesondere bei Präzisionsthermometern sind vielfach solche Ausführungsformen auf dem Markt, bei denen der Widerstandswendel frei aufgehängt ist, um ihn möglichst geringen chemischen und mechanischen Einflüssen eines Trägermateriales auszusetzen. Erschütterungen führen aber sehr schnell zum Bruch des Wendels. Zwar weisen diese Thermometer eine sehr hohe Stabilität im Bereich unter 1 mK auf, die geringe mechanische Stabilität schließt sie jedoch für die industrielle Anwendung aus.

Abbildung 43: Kalibrierfähiges Thermometer

Der Temperatursensor derartiger Thermometer, zu denen auch das gezeigte zählt, entspricht im prinzipiellen Aufbau dem eines drahtgewickelten Keramik-Widerstandes in einem Mantel-Widerstandsthermometer. Der Temperatursensor wird direkt in Vierleitertechnik kontaktiert. Nach dem Herstellungsprozess schliesst sich ein Alterungsprozess an, bei dem die Veränderung des Widerstandes am Tripelpunkt des Wassers beobachtet wird. Thermometer, die einen bestimmten Grenzwert bei der Alterung nicht überschreiten, können auch in einem Temperaturbereich bis 400°C kalibriert werden. Die nachfolgenden Abbildungen zeigen das Ergebnis eines Versuches an mehreren Thermometern, die einer Alterung bei 450°C ausgesetzt sind. Die Veränderung des Widerstandswertes am Tripelpunkt des Wassers wurde nach verschiedenen Zeitabständen ermittelt. Die Analyse zeigt, dass der Widerstandswert innerhalb eines Bandes von ±5 mK einen leichten Anstieg zeigt (Abbildung 44: Alterung von industriellen Präzisionsthermometern an ihrer oberen Einsatztemperatur). Die gleiche Fühler-Konstruktion wurde zur täglichen Überwachung einer Messanlage bei Temperaturen bis maximal 150°C ausgesetzt. Einmal wöchentlich wurde ebenfalls der Widerstandswert am Tripelpunkt des Wassers ermittelt (Abbildung 45: Reproduzierbarkeit eines industriellen Präzisionsthermometers bei täglicher Benutzung bis 150°C). Bei reduzierter Temperaturbelastung zeigt sich kein Drift des Widerstandes. Die Messunsicherheit liegt innerhalb der kleinsten angebbaren Messunsicherheit von 5mK.

7.3 Eichung

Eichungen können nur von Amtspersonen durchgeführt werden. Sie schließt eine Prüfung und Stempelung ein. Welche Thermometer der Eichpflicht unterliegen, ist gesetzlich geregelt. Im Gegensatz zur Kalibrierung handelt es sich bei der Eichung von Thermometern um eine Prüfung des

7 Kalibrierung und Eichung

Anzeigewerkes innerhalb festgelegter Eichfehlergrenzen. Die Grenzen werden vom Gesetzgeber vorgeschrieben und müssen vom Thermometer zum Zeitpunkt der Messung eingehalten werden. Während der vorgeschriebenen Gültigkeitsdauer der Eichung darf das Thermometer die zulässigen Verkehrsfehlergrenzen, die dem Doppelten der Eichfehlergrenzen entsprechen, nicht überschreiten. Geeichte Thermometer werden im gewerblichen Bereich eingesetzt, wie beispielsweise in Wärmemengenzählern. Aber auch Fieberthermometer und Anzeigen in gewerblich genutzten Kühltruhen zählen hierzu. Die Eichung selbst wird durch Eichämter der Bundesländer durchgeführt. Bei Geräten mit großen Stückzahlen kann allerdings ein Unternehmen als Träger einer Prüfstelle selbst die Messung durchführen. Dieser Vorgang ist als Beglaubigung definiert. Die Prüfstellen wiederum unterstehen einer jährlichen Kontrolle durch die Eichämter.

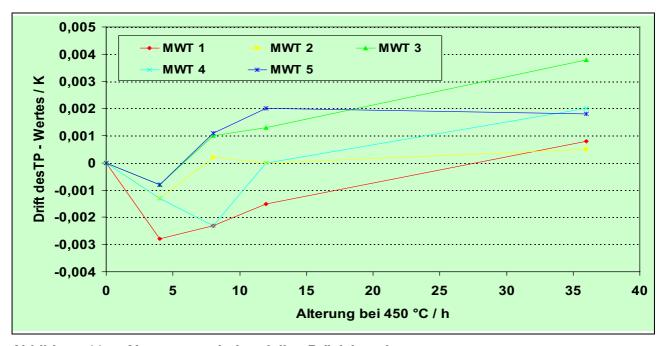


Abbildung 44: Alterung von industriellen Präzisionsthermometern an ihrer oberen Einsatztemperatur



Abbildung 45: Reproduzierbarkeit eines industriellen Präzisionsthermometers bei täglicher Benutzung bis 150°C

8.1 Aufbau elektrischer Thermometer

Neben einer fast unüberschaubaren Vielzahl von Sonderausführungen, angepasst an die verschiedensten Applikationen und ihrer zugehörigen Messaufgabe, gibt es auch solche, die in ihren Bestandteilen vollständig durch Normen beschrieben werden. Ein derartiges Thermometer - dies meint stets den vollständigen Aufbau mit dem Messelement selbst - ist modular aufgebaut: es setzt sich zusammen aus dem Messwiderstand oder Thermoelement, dem Schutzrohr, dem Anschlusskopf und dem darin befindlichen Anschlusssockel sowie ein Prozessanschluss wie z. B. ein Gewinde, Flansch, Einschweißmuffe, Klemmverschraubung oder bewegliche Muffe. Als Temperaturaufnehmer oder Sensor wird nur der Teil des Thermometers bezeichnet, auf den die Messgröße unmittelbar einwirkt und der den temperaturempfindlichen Teil des Thermometers enthält [16].

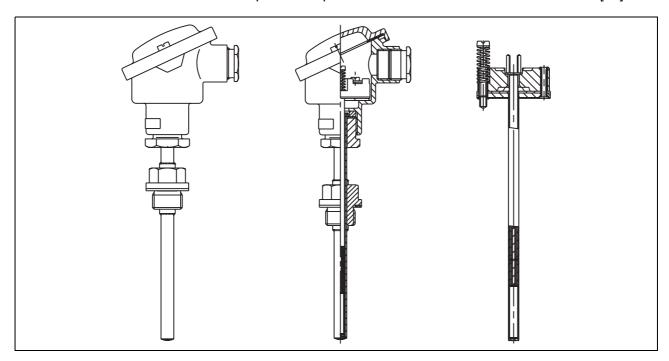


Abbildung 46: Schnitt durch ein Kopf-Thermometer

Messeinsätze sind fertig konfektionierte Einheiten aus Sensor und Anschlusssockel, wobei der Messwiderstand in einem Einsatzrohr von 8 oder 6mm Durchmesser aus Edelstahl untergebracht ist, das in das eigentliche Schutzrohr eingeschoben wird. Dabei stößt die Bodenplatte des Einsatzrohres bündig auf die Bodenplatte des Schutzrohres, damit ein guter Wärmeübergang sichergestellt ist. So lässt sich der Messeinsatz später leicht austauschen. Die Befestigungsschrauben liegen auf Federn auf, sodass auch bei einer unterschiedlichen Längenausdehnung von Einsatz- und Schutzrohr ein frontbündiger Kontakt Gewähr leistet bleibt. Sie sind als Einfach- oder Doppelfühler gefertigt. Ihre Bemaßung legt DIN 43 762 fest. Es werden auch Messeinsätze mit integriertem Zweileiter-Messumformer gefertigt.

Bei Messeinsätzen für Thermoelemente bildet ein Mantelthermoelement gleichzeitig das Einsatzrohr. Die Bemaßung lehnt sich an die DIN 43 762 an.

Wird kein Messeinsatz verwendet, befindet sich das Thermoelement bzw. der Messwiderstand, in Aluminiumoxid, Wärmeleitmittel oder anderer dem Temperaturbereich angepassten Einbettmasse eingebettet, direkt im Schutzrohr. Nach seinem Einbau wird der Anschlusssockel im Anschlusskopf montiert und die Zuleitungen des Messelementes an ihm verlötet. Ein späterer Austausch des Sensors ist dann nicht möglich, es muss in diesem Fall das komplette Thermometer getauscht werden.

JUMO, FAS 146, Ausgabe 2007-01 73

Um dies zu vermeiden, werden vielfach Tauchhülsen verwendet. Es handelt sich hierbei um eine Art Schutzrohr, das fest an der Maschine montiert wird, und in welches das Thermometer hineingeschoben und mit einer Klemmschraube oder einem Keil fixiert wird. Andere Ausführungsformen besitzen ein Innengewinde G1/2, sodass ein Thermometer eingeschraubt werden kann. Das Thermometer kann dabei nur aus einem Messeinsatz bestehen, aber auch ein eigenes Schutzrohr haben. Allerdings verschlechtert sich dann das Ansprechverhalten deutlich. Die Tauchhülse selbst wird am Maschinenteil festgeschweißt (was mit Schutzrohren wegen der geringen Wandstärke nicht möglich ist) oder besitzt ein Außengewinde, meist ein Rohrgewinde. Derartige Tauchhülsen sind von großem Nutzen und werden vielfach eingesetzt. Mit ihnen kann beispielsweise ein Thermometer herausgenommen werden, ohne eine Anlage drucklos zu machen. Anders als bei den Thermometern mit Messeinsatz, bei denen dies prinzipiell auch möglich ist, braucht hier jedoch nicht der Anschlusskopf geöffnet werden.

Beim Austausch des Thermometers muss selbstverständlich auch hier die Anschlussleitung abgeklemmt werden. Aber vielfach ist es auch aus Platzgründen einfacher, erst das Thermometer aus dem Maschinenteil herauszunehmen und es dann abzuklemmen, sodass sich die Verwendung einer Tauchhülse als zweckmäßig erweist. Da die Tauchhülse direkt mit dem Messmedium in Berührung kommt, werden an sie die gleichen Anforderungen hinsichtlich der chemischen und mechanischen Beständigkeit gestellt, wie sonst an das Schutzrohr. Wegen der verfügbaren Materialien liegen die Hauptanwendungsgebiete der Tauchhülsen daher in mittleren Temperaturbereichen wie Kesselanlagen u. dgl.

8.1.1 Anschlussköpfe nach DIN 43 729

Für die Anschlussköpfe sind in der DIN 43 729 zwei Bauformen definiert, die sich in der Größe und geringfügig auch in der Form unterscheiden.

Als Materialien können Gusseisen, Aluminium oder Kunststoff verwendet werden. Ausdrücklich wird in der Norm darauf hingewiesen, dass die äußere Form und alle Einzelheiten, die eine universelle Verwendbarkeit nicht beeinflussen, sowie die Befestigungsart des Deckels dem Konstrukteur überlassen bleiben. Es ist also nur so weit Übereinstimmung mit den angegebenen Maßen einzuhalten, wie sie die universelle Einsetzbarkeit nicht beeinflussen. Die Angaben für den Raumbedarf des Anschlusssockels sind als Minimalwerte, für die gesamte Bauhöhe als Maximalwerte anzusehen. Es existieren daher noch verschiedene andere Bauformen, die speziellen Anforderungen angepasst sind. Auch die Schutzart ist nicht genormt, üblich ist spritzwasserdicht IP 54. Aber auch Ausführungsformen in der Schutzart IP 65 oder in Kunststoff oder Edelstahl werden von der Anwenderseite benötigt.

Das Nennmaß des Durchmessers der Bohrung zur Aufnahme des Schutzrohres beträgt für die Anschlussköpfe:

Bei Form A: 22, 24 oder 32 mm, bei Form B: 15 mm oder Gewinde M24x 1.5.

Die größere Verbreitung hat der kleinere Anschlusskopf Form B, für den auch die Zweileiter-Messumformer ausgelegt sind.

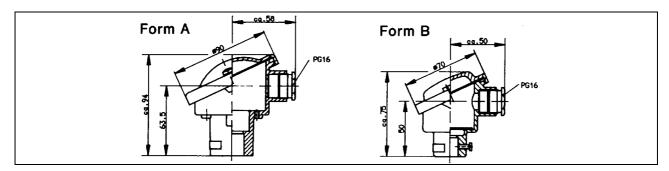


Abbildung 47: Verschiedene Anschlussköpfe

8.2 Standardisierte Thermometer und Schutzrohre

Für Widerstandsthermometer und Thermoelemente sind in den Normen 43 764 bis 43 769 verschiedene Bauformen für unterschiedliche Aufgabenstellungen festgelegt. Sie sind sämtlich mit einem Messeinsatz und einem Anschlusskopf Form B ausgestattet. Auch die Durchmesser und Längen der Schutzrohre sind festgelegt, worauf hier jedoch nicht eingegangen werden soll. Die Angaben sind dem Herstellerkatalog oder der jeweiligen Norm zu entnehmen.

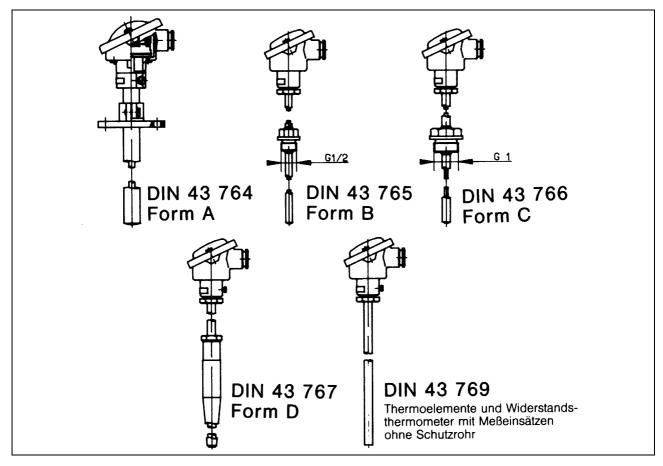


Abbildung 48: Thermometer nach DIN 43 770

Die Form der Schutzrohre dieser Thermometer (mit Flansch, konisch usw.) wird mit Kennzahlen nach Norm DIN 43 772 gekennzeichnet. Diese Norm hat die Norm DIN 43 763 abgelöst, in der die Schutzrohrformen durch Kennbuchstaben bezeichnet wurden. Ferner sind in der Norm DIN 43 772 noch die Schutzrohre für Maschinen-Glasthermometer und Zeigerthermometer nach DIN 16 179 mit eingeflossen.

Form 1: Schutzrohr zum Einstecken

Form 2: Schutzrohr zum Einstecken oder Einschweißen

Form 2G: Schutzrohr zum Einschrauben mit G1/2- oder G1-Prozessanschluss

Form 2F: Schutzrohr zum Anflanschen; Flansch DN25 / PN40 nach DIN 2527,

Dichtleiste Form C nach DIN 2526 (oder nach Absprache)

Form 3: Schutzrohr zum Einstecken oder Einschweißen mit verjüngter Spitze

Form 3G: Schutzrohr zum Einschrauben mit G1/2- oder G1-Prozessanschluss

und verjüngerter Spitze

Form 3F: Schutzrohr zum Anflanschen; Flansch DN25 / PN40ß nach DIN 2527,

Dichtleiste Form C nach DIN 2526 (oder nach Absprache) und verjüngter Spitze

Form 4: Schutzrohr zum Einschweißen für Thermometer und Halsrohre mit Außengewinde

Form 4F Schutzrohr zum Anflanschen für Thermometer und Halsrohre mit Außengewinde

Form 7 Schutzrohr zum Einschrauben (einteilig) mit NPT-Gewinde außen

und zylindrischem Innengewinde

Zum besseren Verständnis und Übersichtlichkeit hier die Gegenüberstellung der Schutzrohrformen aus der DIN 43 763 und DIN 43 772:

Benennung	Form	Form nach DIN 43 772
	А	1
	B1, B2, B3	Teilweise 2G
Metallschutzrohre nach DIN 43 763	C1, C2	Teilweise 2G
TWO CAME OF THE PROPERTY TO 7 GG	D1, D2, D4, D5	4 und Halsrohr
	E1, E2, E3	Teilweise 3
	F1, F2, F3	Teilweise 3F
	G1, G2, G3	Teilweise 3G
	Nicht genomrt	2F, 4F, 7

Tabelle 19: Gegenüberstellung der Schutzrohrformen nach DIN 43 763 und DIN 43 722

Die genannte Norm DIN 43 772 legt auch die Werkstoffe und Schutzrohrlängen sowie ihre Beschreibung in speziellen Kürzeln fest. Hier ein Beispiel für ein Schutzrohr nach Form 4:

Sc	hutzrohr DIN 43	772 - 7	- 4 -	M18x	1,5 - 2	00 - 6	65 - 16	МоЗ
Benennung								
Normnummer								
Form								
Schutzrohr-Innendurchmesser								
Anschlussgewinde für Thermomet	er							
Gesamtlänge								
Einbaulänge								
Werkstoff-Kurzname								

Im Anhang A (informativ) der DIN 43 772 werden zulässige Druckbeaufschlagungen durch Luft, Wasser oder Dampf sowie die maximale Anströmgeschwindigkeit angegeben. Dadurch können die beschriebenen Schutzrohre sehr gut schon in der konstruktiven Phase der Anlagenerstellung berücksichtigt werden. In diesem Zusammenhang muss darauf hingewiesen werden, dass die Berechnungen auf idealisierten Betriebsbedingungen erfolgten. Pulsierende Anströmungen oder Resonanzanregungen von außen durch laufende Maschinen bleiben unberücksichtigt. Die Angaben haben nur informativen Charakter und müssen im realen Fall geprüft werden. Die Berechnungsergebnisse geben keine Sicherheit gegen Bruch oder Abriss des Schutzrohres.

Als Sonderform wird in der DIN 43 769 ein Thermometer beschrieben, das kein Schutzrohr besitzt, und bei dem das Einsatzrohr des Messeinsatzes direkten Kontakt mit der Umgebung hat. Allerdings ist in dieser Ausführungsform der Anschlusskopf nicht bzw. nur unvollständig nach unten abgedichtet. Besser ist daher die Verwendung eines Thermometers mit dünnem Schutzrohr, da hierdurch das Innere des Anschlusskopfes hermetisch abgeschlossen ist.

Eine weitere vollständige Beschreibung von Thermometern für höhere Temperaturbereiche liefert die DIN 43 733, die allerdings nur für Thermoelemente gilt, welche direkt, d. h. ohne Messeinsatz, in die Armatur eingesetzt sind. Im Gegensatz zu der oben genannten Norm werden hier auch keramische Schutzrohre und solche mit gasdichtem Innenrohr beschrieben. Es gelten folgende Abkürzungen:

A: Anschlusskopf Form A,B: Anschlusskopf Form B,M: Metallenes Schutzrohr,

MK: Metallenes Schutzrohr mit gasdichtem keramischen Innenrohr,

K: Keramisches Schutzrohr,

KK: Keramisches Schutzrohr mit gasdichtem keramischen Innenrohr.

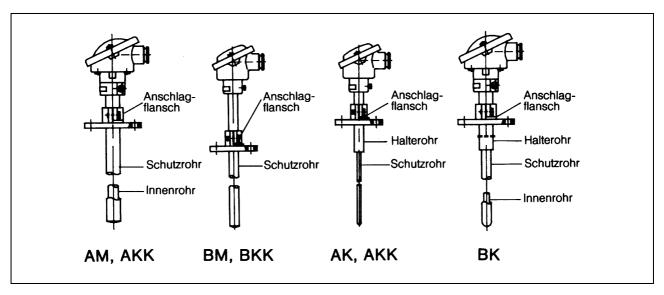


Abbildung 49: Thermometer nach DIN 43 733

Die zugehörigen Schutzrohre werden in den Normen DIN 43 720 (Metall) und DIN 43 724 (Keramik) beschrieben.

Ansonsten stehen vielfältige Sonderformen zur Verfügung, teilweise mit genormten Anschlussköpfen, teilweise in sehr speziellen, nicht genormten Bauformen mit Steckverbindungen oder fest montierter Anschlussleitung.

8.3 Anwendungsbezogene Thermometer

Die im Kapitel 8.2 "Standardisierte Thermometer und Schutzrohre" beschriebenen Thermometer sind standardisierte Bauformen, die in erster Linie im breiten Feld der Prozesstechnik, wie zum Beispiel der (petro-)chemischen Industrie oder im Kraftwerksbau zum Einsatz kommen. Aber nicht überall können diese Thermometer zur Messung eingesetzt werden. So ist in vielen Fällen die Baugrösse überdimensioniert für die vorhandenen Messorte, auf Grund der mechanischen Schwingungen das Thermometer überbelastet oder die messtechnischen Anforderungen höher.

Im Folgenden werden verschiedene Bauformen vorgestellt, die für bestimmte Applikationen optimiert wurden.

8.3.1 Widerstandsthermometer für starke Schwingungen

Bei der Überwachung und Steuerung von Maschinen werden Temperaturfühler benötigt, die sehr unterschiedliche Anforderungen erfüllen müssen. Eine solche Anforderung ist die einer hohen mechanischen Schwingfestigkeit über einen Zeitraum von mehr als 10 Jahren. Die Schwingungsfrequenz liegt bei 500Hz bis 3000Hz und die auftretenden Beschleunigungen bis zu 50g (50fache Erdbeschleunigung). Solche Bedingungen findet man z. B. an Druckluft- und Kältekompressoren, im Bereich Lastkraftwagen und Schienenfahrzeugen (Öltemperatur Getriebe, Kühlwassertemperatur, Ladelufttemperatur) oder Schifffahrt. Da die Fühler häufig im Außenbereich von Fahrzeugen im Unterflurbereich angebracht sind, treten sehr hohe Temperaturgradienten innerhalb des Temperaturfühlers auf. Auf der einen Seite beträgt die Messtemperatur 180°C und im Außenbereich am Stecker Umgebungstemperatur (bis -30°C) und hohe Feuchtigkeit oder Spritzwasser (z. B. Regenfahrt des Fahrzeuges). Sowohl für das Steckersystem als auch für den Fühler selbst müssen deshalb hohe Schutzart-Forderungen bis IP 67/IP 69k erfüllt werden.

Neben den hohen mechanischen Belastungen werden auch hohe messtechnische Anforderungen an den Temperaturfühler gestellt. Die Ansprechzeiten müssen sehr kurz sein ($t_{05} < 1,1$ s in Wasser), damit bei Getrieben rasch ansteigende Öltemperaturen rechtzeitig erfasst werden und Übertemperaturen vermieden werden. Auf Grund der geringen Eintauchtiefen müssen durch konstruktive Massnahmen im Inneren des Temperaturfühlers Maßnahmen zur Reduzierung des Wärmeableitfehlers getroffen werden. In der nachfolgenden Abbildung ist eine Auswahl solcher Temperaturfühler abgebildet, die all diese Eigenschaften erfüllen und sich auch über Jahre im Einsatz bewährt haben.

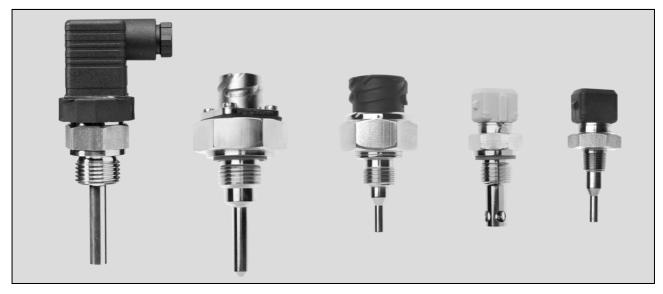


Abbildung 50: Erschütterungsfeste Widerstandsthermometer der Baureihe JUMO-VIBROtemp

8.3.2 Widerstandsthermometer für die Lebensmittelindustrie

Bei Koch-, Back- und Räucherprozessen in der Nahrungsmittelindustrie ist es zur Prozesssteuerung von enormer Wichtigkeit die Kerntemperatur des Gutes zu messen. Dabei treten Temperaturen bis zu 260°C auf. Erschwerend kommt hinzu, dass während des Prozesses noch abwechselnd Wasserdampf eingespritzt wird. Zu Reinigungszwecken werden diese Thermometer häufig im heißen Zustand direkt in kalte Reinigungslösungen komplett untergetaucht. Bedingt durch das Zusammenziehen der Luft im Inneren des Fühlers beginnt der Fühler zu "atmen" und Flüssigkeit versucht in den Fühler einzudringen. Gelangt Feuchtigkeit an den elektrischen Messkreis, so entsteht ein Nebenschluss, das Thermometer zeigt eine geringere Temperatur an. Dieser Fall ist besonders schlimm, da der Steuerung eine zu geringe Kerntemperatur übermittelt wird. Der Kochvorgang wird verlängert bzw. die Prozesstemperatur erhöht und infolge verbrennt das Kochgut.

Durch eine für diese Thermometer speziell entwickelte Vergusstechnik ist es gelungen auch über Jahre die Feuchtigkeit trotz harter Belastungen vom Messkreis und Sensor fern zu halten. Eine Weiterentwicklung dieser Thermometer besteht heute aus Mehrfach-Widerstandsthermometern und Thermoelementen, die in bestimmten Abständen entlang des Schutzrohres die Temperatur messen. Damit wird der Verlauf der Kerntemperatur über der Zeit und Ort verfolgt, um den Kochvorgang gleich bleibend zu gestalten.

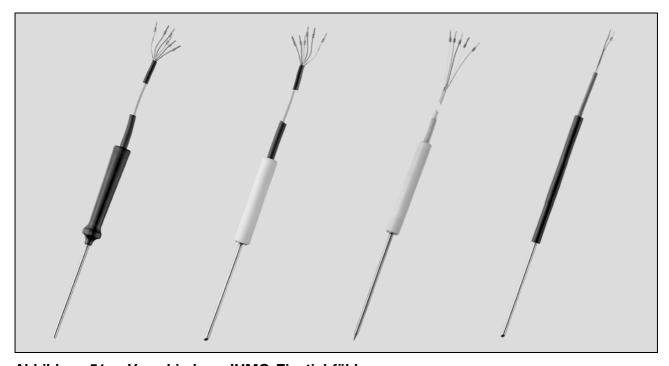


Abbildung 51: Verschiedene JUMO-Einstichfühler

8.3.3 Widerstandthermometer für Wärmezähler

Um in einem Heiz- oder Kühlkreis die abgegebene oder aufgenomme Wärme berechnen zu können, muss eine Messung erfolgen. Hierzu wird in vielen Fällen ein Wärmezähler im Kreislaufsystem eingebaut, der zur Berechnung der Wärmemenge die erforderlichen Größen, Durchfluss und Temperatur des Vorlaufes und Rücklaufes des Heizsystems misst. In dem so genannten Rechenwerk werden die Wärmemengen unter Berücksichtigung der Wärmekapazität des Wärmeträgers (in Heizungssystemen meist Wasser) berechnet, gespeichert und in gesetzlichen Einheiten zur Anzeige gebracht. Werden Wärmezähler zur Abrechnung von Heizkosten herangezogen, unterliegen sie der Eichpflicht und müssen bestimmte Fehlergrenzen, die so genannten Eichfehlergrenzen, einhalten. Vor dem Inverkehrbringen der Wärmezähler müsen die Komponenten auf Einhaltung der Eichfeh-

JUMO, FAS 146, Ausgabe 2007-01 79

lergrenzen geprüft und beglaubigt werden.

Die abgegebene Wärmemenge berechnet sich wie folgt:

Formel 30:

$$Q = k \cdot V \cdot \Delta \Theta$$

Q = Wärmemenge,

k = Wärmekoffizient des Wärmeträgers,

V = Volumen,

 $\Delta\Theta$ = Temperaturdifferenz zwischen Vor- und Rücklauf.

Sowohl in der Anlage 22 der Eichordung als auch in der Norm DIN EN 1434 werden die Fehlergrenzen für die einzelnen Komponenten eines Wärmzählers definiert.

Für die Temperaturfühler, die die Temperaturdifferenz zwischen Vor- und Rücklauf messen, gilt in Abhängigkeit von der zu messenden Temperaturdifferenz folgende relative Fehlergrenze E nach Formel:

Formel 31:

$$E = 0.5 \% + 3 \% \cdot \frac{\Delta \Theta_{min}}{\Delta \Theta}$$

E = relativer Fehler,

 $\Delta\Theta_{\text{min}}$ = kleinste zulässig messbare Temperaturdifferenz (meist: 3 K),

 $\Delta\Theta$ = zu messende Temperaturdifferenz.

Um die Fehlergrenzen für die Temperaturdifferenz einhalten zu können, müssen die Temperaturfühler nach einem mathematischen Verfahren unter Berücksichtigung der individuellen Kennlinien paarweise zusammengeführt werden. Hierzu ist es für jeden einzelnen Temperaturfühler erforderlich im eingesetzten Messbereich die individuellen Kennlinien-Parameter R₀, A und B zu bestimmen, da zwei beliebige Temperaturfühler auch mit eingeschränkter Toleranz (z. B. 1/3 DIN) nicht automatisch die Temperaturdifferenz-Fehlergrenzen einhalten. Zur eindeutigen Bestimmung der Kennlinien-Parameter müssen alle Temperaturfühler bei drei Temperaturen mit einer Messunsicherheit von 21 mK kalibriert werden.

Die Heizungssysteme im Wohnungsbereich bestehen im Allgemeinen aus Rohrleitungen mit einem Durchmesser kleiner 25 mm, sodass die Eintauchtiefe der Temperaturfühler mit 15 mm bis 30 mm (je nach Montage) extrem klein ausfällt. Um die Temperatur in der Rohrleitung richtig erfassen zu können, müssen diese Temperaturfühler auf einen sehr kleinen Wärmeableitfehler hin optimiert sein. Gemäß den Zulassungskritierien darf der Wärmeableitfehler bei der festgelegten Mindesteintauchtiefe des Temperaturfühlers nicht mehr als 0,1 K betragen. (vergleiche auch Kapitel 6 "Wärmeableitfehler").

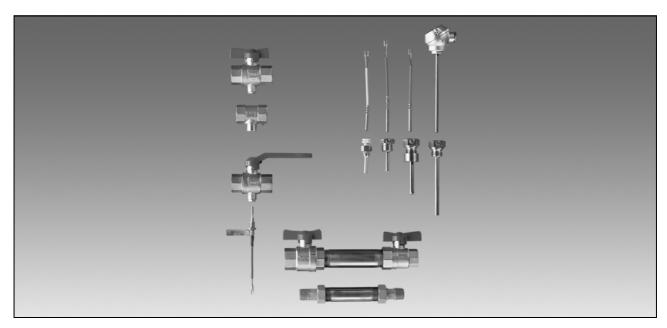


Abbildung 52: Verschiedene Temperaturfühler der Baureihe JUMO-HEATtemp

8.4 Anforderungen an das Schutzrohr

Das Thermoelement oder der Messwiderstand werden durch das Schutzrohr vor mechanischen und chemischen Einflüssen geschützt. Hinsichtlich der Temperaturbeständigkeit werden beim Widerstandsthermometer wegen der naturgemäß geringeren Maximaltemperatur nicht so hohe Anforderungen gestellt wie beim Thermoelement, wenn diese in Schmelzen, Härtebädern und dergleichen eingesetzt werden. Zudem müssen vom Schutzrohr in beiden Fällen mechanische Anforderungen erfüllt werden, welche die Wandstärke, aber auch dessen Form und damit verbunden die Druck- und Biegefestigkeit bestimmen. Hier stehen die bereits oben beschriebenen unterschiedlichsten Bauformen zur Verfügung. Auf die für die unterschiedlichen Anwendungsfälle geeigneten Materialien wird recht ausführlich von Lieneweg [2] eingegangen. Sie richten sich nach den chemischen Bedingungen und den auftretenden Maximaltemperaturen. In einigen Anwendungsfällen kann auch Erosion auf das Schutzrohr einwirken, etwa in Mischern sowie bei Schüttgütern, oder wenn mit einem strömenden Medium Festkörper mitgeführt werden. Gegen derartige abrasive Flüssigkeiten schützen Überzüge mit vergleichsweise dicken Schichtdicken, beispielsweise Hartverchromungen, oder Schutzrohrmaterialien mit hohen Oberflächenhärten wie Siliziumkarbid. Bei sehr schnell strömenden Medien sind auch Erosionerscheinungen durch Kavitation möglich. Hier muss durch konstruktive Maßnahmen die Ausbildung von Wirbeln am Schutzrohr vermieden werden, ohne dass jedoch Toträume entstehen, die das Ansprechverhalten negativ beeinflussen.

Im Hochtemperaturbereich gelten verschärfte Bedingungen hinsichtlich der mechanischen und chemischen Beständigkeit der Schutzrohre. Besonders kritisch sind Salz-, Metall- und Glasschmelzen, die durch ihre hohe Temperatur sehr reaktiv sind. Dabei ist bei allen Materialien stets darauf zu achten, ob sich das Schutzrohr in einer neutralen, oxidierenden oder reduzierenden Atmosphäre befindet, da hiervon vielfach die Maximaltemperatur abhängt.

Es wird zwischen metallischen, keramischen und metallkeramischen Materialien unterschieden. Während die recht spröden keramischen Schutzrohre chemisch resistent und sehr temperaturfest sind, bieten metallische Schutzrohre wegen ihrer Zähigkeit Vorteile der mechanischen Eigenschaften, der Wärmeleitfähigkeit und der Temperaturwechsel-Beständigkeit. Keramische Materialen werden auch dort eingesetzt, wo hohe Reinheiten gefordert sind, da sie mit dem Messmedium keine Reaktionsprodukte bilden. Da sie so gut wie nicht ausdampfen, werden Vakuum- oder hochreine Ofenatmosphären nicht verunreinigt. Die Maximaltemperaturen reichen bis ca. 1700°C.

JUMO, FAS 146, Ausgabe 2007-01 81

8.4.1 Metallische Schutzrohre

Mit Schutzrohren aus niedriglegiertem Stahl sind Messungen bis ca. 800°C möglich, bei der Verwendung hitzebeständiger Stähle bis 1200°C. Ihr großer Vorteil ist die mechanische Belastbarkeit, wogegen sie chemisch recht empfindlich sind. Es finden vielfach Schutzrohre aus rost- und säurebeständigem Stahl Anwendung, die vergleichsweise korrosionsbeständig sind und Temperaturobergrenzen bis 800°C erlauben. Ihnen steht allerdings die vergleichsweise schlechte Wärmeleitfähigkeit des Materials gegenüber. Wie alle Legierungen, also auch Bronze und Messing, haben diese wegen des veränderten Metallgitters eine erheblich schlechtere Wärmeleitfähigkeit als die Grundmetalle. Wo kurze bis sehr kurze Ansprechzeiten bei gleichzeitiger hoher mechanischer Stabilität und damit verbundener größerer Wandstärke des Schutzrohres gefordert sind, sollte daher auf ein kupfernes Schutzrohr zurückgegriffen werden, sofern der dadurch verbundene erhöhte Wärmeableitfehler zulässig ist. Oberhalb 300°C oxidiert Kupfer an der Luft, wodurch die Temperaturobergrenze einschränkt. Als Oberflächenschutz eignen sich Nickelschichten, die wegen der ähnlichen elektrochemischen Eigenschaften beider Metalle gutes Haftungsvermögen aufweisen.

Bei Mantelthermoelementen wird als Ummantelung rost- und säurebständiger Stahl, Werkst. Nr. 1.4571 (V4A, Inox, Nirosta), mit ca. 18 % Chrom und 10 % Nickel verwendet, der Einsatztemperaturen bis 800°C ermöglicht.

Für höhere Temperaturen eignet sich eine stark nickelhaltige Legierung mit der Werkstoffnummer 2.4816. Sie ist unter dem Handelsnamen Inconel (Handelsbezeichnung der Inco Alloy) bekannt. Es handelt sich dabei um eine Legierung aus 72 % Ni, 14 - 17 % Cr, 6 - 10 % Fe und weniger als 10 % Mangan mit einem Schmelzpunkt von 1400°C, die in oxidierender Atmosphäre bis 1150°C beständig ist. In schwefelhaltigen oxidierenden Gasen verringert sich die Maximaltemperatur auf 850 °C und geht bei gleichzeitiger reduzierender Atmosphäre auf 540°C hinunter. In Endogas sind Temperaturen von 1100°C mit guten Standzeiten möglich: Nach Anderson [20] betrug die Drift nach 2500 Stunden - 0,3K bei einem Mantelthermoelement vom Typ N, 1,8 K beim Typ K. (Endogas ist ein carbonisierendes Gas, das durch die unvollständige Verbrennung von Propan hergestellt wird. Durch Zusatz von 2 - 6% Ammoniak wirkt es carbonitrierend.) Bei hohen Temperaturen wird Inconel wasserstoffdurchlässig. [2] Nicrobell (Handelsname der Microbell Pty. Ltd) ist ein Material aus 15% Chrom, 1,5% Silizium, 80% Nickel und 0,2% Silizium. Es hat starke Ähnlichkeit mit Nicrosil, das als Plusschenkel für das Thermoelement Typ N verwendet wird. Nicrobell schmilzt bei 1420°C. In oxidierenden Atmosphären und im Vakuum ist es sehr stabil, die Temperaturobergrenze liegt hier bei ca. 1300°C, wird jedoch durch das verwendete Thermoelement eingeschränkt (Abschnitt 3.8.1).

In aufkohlenden Atmosphären wie Endogas reduziert sich die Einsatztemperatur auf ca. 500°C [20].

Seine Wärmeleitfähigkeit von 15Wm-'K-1 ist der von Inconel und rostfreiem Stahl sehr ähnlich.

Die Problematik der Korrosionsbeständigkeit und der schwer zu treffenden Voraussagen soll an Isokorrosionsdiagramm (Abbildung 53: *Isokorrosionsdiagramm*) exemplarisch dargestellt werden: Die Frage nach der Beständigkeit von Stählen in Schwefelsäure lässt sich nur unter Berücksichtigung zweier Parameter, der Konzentration und der Temperatur, beantworten. Stahl der Werkstoffnummer 1.4571 z. B. weist eine große Beständigkeitslücke im Bereich einer 25 - 78-prozentigen Säurekonzentration auf. Aber auch unter- und oberhalb dieses Bereiches muss unbedingt die Temperatur berücksichtigt werden. Vor dem Einsatz eines Materiales ist daher die Prüfung seiner Korrosionsbeständigkeit unter den gegebenen Einsatzbedingungen meist unumgänglich.

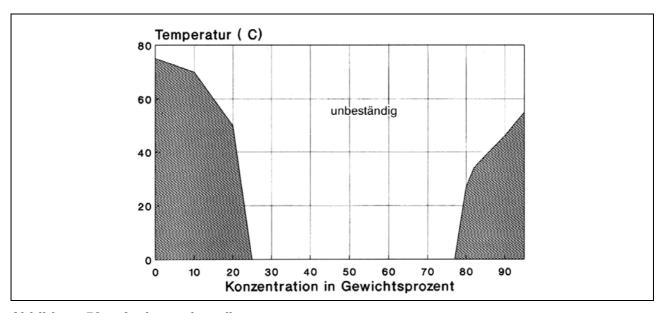


Abbildung 53: Isokorrosionsdiagramm

8.4.2 Schutzrohre für Schmelzen

Bei Metallschutzrohren für Schmelzen ist das Redoxpotenzial der Schmelze und ihrer Komponenten entscheidend dafür, ob und in welchem Maß am Schutzrohr Korrosionserscheinungen auftreten. Besonders kritisch ist die Grenzfläche Schmelze / Luft, da die hier befindlichen Schlacken stark oxidierend wirken. In einigen Fällen muss daher durch geeignete Maßnahmen dafür gesorgt werden, dass das Schutzrohr nicht mit der Schlacke in Berührung kommt. Hierzu eignen sich keramische Rohre oder für Nichteisenschmelzen auch Grafitrohre, die durch die Schlacke hindurchgesteckt werden. Durch sie wird das metallene Schutzrohr des Thermometers gesteckt, das durch diese Maßnahme in die Schmelze hineinragt, ohne mit der Schlacke in Berührung zu kommen.

Die Korrosionsbeständigkeit metallener Schutzrohre lässt sich durch Oberflächenbeschichtungen verbessern. Üblich sind Beschichtungen aus Emaille, Kunststoff und Metall.

Galvanische Überzüge wie Vernickeln, Verchromen oder Verzinken verbessern die chemische Beständigkeit, führen bei Verletzung der Oberfläche jedoch zu erhöhter Korrosion des Trägermaterials auf Grund der Ausbildung von Lokalelementen. Dieser Effekt ist besonders bei verchromtem Stahl zu beachten. Der Vorteil der Oberflächenbeschichtung wird hierdurch teilweise aufgehoben, und die Verwendung rostfreier Stähle kann günstiger sein.

Nickelschichten auf Kupfer oder Messing erweisen sich als wesentlich haltbarer und weniger anfällig gegenüber Risskorrosion, da hier das Grundmaterial dem Überzug elektrochemisch ähnlicher ist. Das Überzugsmaterial sollte möglichst aus dem gleichen Metall wie der Behälter sein, in den die Armatur eingebaut wird. Ansonsten können sich an den Befestigungspunkten Lokalelemente ausbilden, die erhöhte Korrosion zur Folge haben. Wo die Schutzwirkung derartiger Metallüberzüge nicht ausreicht, sollte auf eine Kunststoffbeschichtung übergegangen werden, sofern die auftretenden Temperaturen dies zulassen.

Emaillierte Rohre sind chemisch sehr resistent und werden auch von heißen Säuren nicht angegriffen. Sie finden Anwendung in der Rauchgasmessung und anderen aggressiven Umgebungen. Gegenüber anderen Überzügen hat Emaille den Nachteil, dass sie spröde ist und bei Biegung des Schutzrohres oder Belastung mit Kerbwirkung durch spitze, harte Gegenstände abplatzt.

8.4.3 Organische Beschichtungen

Die Korrosionsfestigkeit lässt sich außer durch anorganische (galvanische) Überzüge auch durch Kunststoffbeschichtungen verbessern. Aus der Vielzahl derartiger Polymere sind die folgenden exemplarisch genannt:

Hostaflon (Hoechst AG) ist ein thermoplastisch bearbeitbarer Fluor-Kunststoff mit Einsatztemperaturen von - 200 ... +150°C.

Wema-Kor ist ein organisches Überzugsmaterial auf Fluor-Basis mit metallischen Bestandteilen, das Einsatztemperaturen bis 300°C erlaubt. Der Überzug ist sehr witterungsfest und salzspritzwasserfest, bis um den Faktor 10 höher als bei galvanischen Zink- oder Chromschichten. Die Schichtdicke beträgt allgemein nur 12 bis 15µm, sodass die Maßhaltigkeit des Bauteiles weitestgehend erhalten bleibt, Gewinde nicht nachgeschnitten werden müssen und der Kunststoff somit das Festrosten der Gewinde verhindert. Wegen seiner hohen Witterungsbeständigkeit findet Wema-Kor vielfach in der Automobilbranche Einsatz.

Das Material ist beständig gegen die meisten verdünnten anorganischen Säuren und Laugen, verdünnte organische Säuren, Pflanzen- und Mineralöle, Benzine und höhere Alkohole, Lebensmittel und Kosmetika. Bedingt beständig gegen Lösungsmittel wie Ester, Chlorkohlenwasserstoffe und Aromate, organische Basen und konzentrierte Fettsäuren. Nicht beständig gegen Ketone, Aldehyde, Methanol, konzentrierte Salpeter-, Schwefel- und Salzsäure, Halogene, nitrose Gase in hohen Konzentrationen.

Halar (Trichlor-Fluor-Polyethylen), eingetragenes Warenzeichen der Allied-Chemocal, ist ein Kunststoff mit ausgezeichneter chemischer Beständigkeit sowohl im sauren als auch im alkalischen Bereich. Bis 120 °C ist das Material inert gegen jede bekannte Chemikalie [21]. Die maximale Dauereinsatz-Temperatur liegt bei 160 °C, erst unterhalb -76 °C tritt Versprödung auf. Die Schichtdicke variiert zwischen 600 ... 800 µm. Sie kann bis 1,4 mm erreichen, die Mindestschichtdicke beträgt 300 µm. Halar ist unempfindlich gegen Spannrissbildung und zeichnet sich durch hohe Zähigkeit, Abrissfestigkeit, Elastizität und Schlagfestigkeit aus. Physiologisch gilt es als unbedenklich [6].

8.4.4 Keramische Schutzrohre

Keramische Schutzrohre werden wegen ihrer vergleichsweise schlechten mechanischen Eigenschaften nur dann eingesetzt, wenn die Messbedingungen metallische Armaturen ausschließen, sei es aus chemischen Gründen oder wegen hoher Messtemperaturen. Ihr Haupteinsatzgebiet sind Bereiche zwischen 1000 und 1800°C. Sie können direkt das Medium berühren oder als gasdichtes Innenrohr das Thermoelement vom eigentlichen Schutzrohr aus Metall hermetisch trennen. Oberhalb 1200°C sollten sie hängend montiert werden, damit sie nicht durch Biegebeanspruchung verziehen oder brechen. Schon Haarrisse können dazu führen, dass das Thermoelement "vergiftet" wird und driftet.

Die Temperaturschockbeständigkeit einer Keramik wächst mit dem Wärmeleitvermögen und der Zugfestigkeit und ist umso größer, je geringer der termische Ausdehnungskoeffizient ist. Auch die Wandstärke des Materials ist dabei von großer Bedeutung; dünnwandige Rohre sollten dickwandigen vorgezogen werden.

Risse entstehen häufig dadurch, dass die Schutzrohre zu raschen Temperaturwechseln ausgesetzt werden, indem sie zu schnell aus einem heißen Ofen herausgezogen werden. Die Verwendung eines Innen- und Außenrohres aus gasdichter Keramik ist daher ratsam. Hierbei schützt das äußere, dünnwandige Schutzrohr durch die zwischen ihnen befindliche Luftschicht das innere vor einem Temperaturschock. Dies erhöht die Lebensdauer des Thermometers, wird allerdings mit einer längeren Ansprechzeit erkauft.

Bei edlen Thermoelementen werden hohe Anforderungen an den Reinheitsgrad der Keramik gestellt: Platin-Elemente sind sehr empfindlich gegenüber Vergiftung durch Fremdatome. Hierzu zählen besonders Silizium, Arsen, Phosphor, Schwefel und Bor. Bei Armaturen für Hochtemperaturmessungen ist daher besonders darauf zu achten, dass das Isolations- und Schutzrohrmaterial möglichst keines der genannten Elemente enthält. Als besonders schädlich ist in diesem Zusammenhang SiO₂ anzusehen. Die hierdurch verursachte Alterung scheint dabei nicht vom Siliziumdioxid, sondern von begleitenden Verunreinigungen aus Eisen ausgelöst zu sein [4]. Bei neutraler und reduzierender Atmosphäre erfolgt die Vergiftung wesentlich schneller, Ursache hierfür ist vermutlich SiO₂, das zum SiO reduziert wird und mit dem Platin zu Pt₅Si₂ reagiert. Schon 0,2 % SiO₂ im Isolations- oder Schutzrohrmaterial sollen in reduzierender Atmosphäre zur Ausbildung derartiger spröder Silizide ausreichen [4].

Gasdurchlässige Schutzrohre können daher nicht in reduzierenden Atmosphären, wie beispielsweise in Glühöfen, verwendet werden, während sie in oxidierender Umgebung oder Schutzgas zulässig sind. Wird ein Innenrohr aus gasdichter Keramik verwendet, kann das äußere Schutzrohr aber durchaus gasdurchlässig sein.

Bei der Montage des ungeschützten Platinelementes und insbesondere des der Messtemperatur ausgesetzten Teiles ist aus den genannten Gründen auf extreme Sauberkeit zu achten. Fett- und Ölrückstände (Schwefel), Handschweiß (NaCl, KaCl, CaCl) oder metallische Verunreinigungen (Abrieb, korrodierte Werkzeuge) müssen unbedingt vermieden werden.

Weiterhin sind im Hochtemperaturbereich die Isolationseigenschaften der verwendeten Materialien wichtig. Aluminiumoxid und Magnesiumoxid werden bereits bei Temperaturen oberhalb 1000°C merklich leitend. Bessere Isolationseigenschaften bietet Berylliumoxid, das jedoch wegen seiner Toxizität in der Anwendung Probleme aufwirft. Zur Isolation werden daher Vierlochstäbe aus KER 710 (Kapitel 8.4.5 "Keramische Isolationswerkstoffe") verwendet. Das Isolationsverhalten der Keramiken wird in erster Linie von deren Alkaligehalt bestimmt; Keramiken mit hohem Alkaligehalt werden bereits bei vergleichsweise geringen Temperaturen von ca. 800°C elektrisch leitend. Reine Aluminiumoxid-Keramiken besitzen die besten Eigenschaften.

8.4.5 Keramische Isolationswerkstoffe

Im Folgenden werden zwei keramische Materialien vorgestellt, die in ihren Eigenschaften in der DIN 43 724 festgelegt sind. Es handelt sich dabei um gasdichte Keramiken. Die ebenfalls in der DIN aufgeführte poröse Keramik KER 530 ist in ihrer Bedeutung rückläufig, da bei den Platin-Thermoelementen stets ein gasdichtes Innenrohr erforderlich ist.

KER 710 (Alsint 99,7)

Es handelt sich um eine reine Oxidkeramik aus mehr als 99.7% Al $_2$ O $_3$ sowie Spuren von MgO, Si $_2$ O und Na $_2$ O mit einer Feuerstandfestigkeit bis $1900\,^{\circ}$ C und einem Schmelzpunkt von $2050\,^{\circ}$ C. Es ist der beste keramische Werkstoff mit einem Isolationswiderstand von $10^7\Omega\,^{\circ}$ cm bei $1000\,^{\circ}$ C, gut temperaturwechselbeständig auf Grund der guten Wärmeleiteigenschaften und relativ geringen Wärmeausdehnung von $8\cdot 10^{-6}\cdot K^{-1}$. Das Wärmeleitvermögen entspricht mit $18W/m\cdot K$ dem von rostfreiem Stahl [22]. Das Material mit großer mechanischer Festigkeit (Biegefestigkeit $340\,^{\circ}$ MN · m $^{-2}$, Härte 9 nach **Mohs**) eignet sich für Öfen mit hohen Temperaturen und reduzierender Atmosphäre mit Wasserstoff und Kohlenmonoxid. KER 710 eignet sich sogar für Glasschmelz- und Steinzeugbrennöfen mit Alkalidämpfen bis $1600\,^{\circ}$ C und Glasschmelzen bis $1500\,^{\circ}$ C [2]. Unter derartigen Bedingungen müssen sowohl der Isolierstab als auch das Schutzrohr aus KER 710 bestehen.

KER 610 (Thermometerporzellan, Pythagoras)

Dieser Werkstoff besitzt einen höheren Alkaligehalt (60% Al2O3, 37% SiO2, 3% Alkali) und dadurch einen geringen Isolationswiderstand von ca. $10^7 \Omega \cdot$ cm bei 1000 °C. Durch den hohen Siliziumdioxid-Anteil darf es nicht in reduzierenden Atmosphären eingesetzt werden. Gegenüber KER 710 hat es eine um das Neunfache geringere Wärmeleitfähigkeit; seine mechanische Stabilität ist

gut, die Biegefestigkeit beträgt 185 MN · m⁻², die Oberflächenhärte nach Mohs 8 [22].

Das Material ist bis ca. 1500°C einsetzbar, wobei sich die Maximaltemperatur bei Metallschmelzen jedoch deutlich reduziert: Zinn 600°C, Aluminium 700°C, Messing 900°C, Kupfer 1250°C, abhängig vom Verunreinigungsgrad der Schmelzen [4]. Der Vorteil gegenüber KER 710 liegt im Preis, der rund fünf Mal niedriger ist.

8.4.6 Sonderwerkstoffe

Den guten Eigenschaften der Keramiken hinsichtlich Temperaturfestigkeit und chemischer Resistenz steht leider die Tatsache gegenüber, dass das Material recht spröde ist. Dadurch ist die mechanische Festigkeit deutlich geringer als bei metallischen Schutzrohren und die Standzeit nicht immer befriedigend. Chemisch sehr beständig sind Schutzrohre aus Siliziumkarbid. Bei einer maximalen Temperatur von 1100°C eignen sich besonders für Aluminium-, Aluminium-Zinkguss-Schmelzen und andere Nichteisenmetalle wie Antimon und Kupfer. Ihre guten mechanischen Eigenschaften sind denen der sonst in diesem Bereich eingesetzten Ton-Grafit-Rohre deutlich überlegen und erlauben vielfach Standzeiten bis zu einem Jahr. Für das Thermoelement ist ein gasdichtes Innenrohr aus KER 710 erforderlich. Von basischen Schlacken und chlorhaltigen Gasen wird Siliziumkarbid jedoch stark angegriffen [2].

Für noch höhere Temperaturen bis ca. 1600°C eignen sich Schutzrohre aus Cermotherm. Dieser metallkeramische Sinterwerkstoff besteht aus 60 % Molybdän und 40 % Zirkonoxid. Die Mischung einer oxidierenden mit einer reduzierenden Komponente macht dieses Material gegen Schlacken und Schmelzen weitgehend resistent. Durch den hohen Metallanteil sind die thermischen und mechanischen Eigenschaften sehr gut.

Die wichtigsten Einsatzgebiete sind Stahl-, Gusseisen-, Kupfer-, Messing- und Zinkschmelzen sowie Salzschmelzen in Härtebädern. Cermotherm-Schutzrohre sind ebenfalls geeignet für Goldschmelzen. Die Maximaltemperatur beträgt ca. 1600°C.

86

8.5 Einsatzbedingungen der Schutzrohre

Die Beständigkeit der verschiedenen metallenen Schutzrohrmaterialien wird u. a. in der DIN 43 720 beschrieben, die auch die Abmessungen und Materialien festlegt. Zusammen mit den Angaben aus [1] und [2] sowie Herstellerangaben zu den unterschiedlichen Materialien ergibt sich folgende Aufstellung. Die folgenden Listen zeigen einige Anwendungsgebiete der verschiedenen Schutzrohr-Materialien ohne den Anspruch auf Vollständigkeit auf. Diese Angaben sind unverbindliche Anhaltswerte und entbinden nicht von der Prüfung des Schutzrohrwerkstoffs auf Eignung für die vorhandenen Betriebsverhältnisse. Die angegebenen Temperaturen beziehen sich auf den Einsatz ohne mechanische Belastung und - sofern nicht anders angegeben - den Einsatz in reiner Luft. Sie sind stark abhängig von der Konzentration, der Zusammensetzung und dem pH- und Redoxpotenzial des Mediums, indem sie eingesetzt werden.

Die überraschend hohe Beständigkeit von CrNi-Stahl gegenüber konz. Schwefelsäure bis zu deren Siedepunkt nach [1] muss wohl relativiert werden, da sich diese nur auf absolut wasserfreie und somit nicht dissoziierte Säure bezieht, die zu SO₂ reduziert wird, wogegen bei der verdünnten Säure der Wasserstoff reduziert wird. Wegen der starken Hygroskopizität der konzentrierten Säure ist jedoch immer von einem gewissen Anteil an dissoziierten Molekülen auszugehen.

	CrNi-Stahl	KER 710	Teflon	Halar
konz. Essigsäure	-	25°C	118°C	65°C
verd. Schwefelsäure	-	25°C	100°C	120°C
konz. Schwefelsäure	(330°C)	-	200°C	23°C
verd. Salzsäure	-	25°C	100°C	150°C
Salzsäure 38 %	-	-	25°C	150°C
verd. Salpetersäure	-	25°C	100°C	150°C
Königswasser	-	-	-	120°C
Flusssäure	-	-	25°C	120°C
wässrige Basen	25°C	-	100°C	120°C
konz. Basen	-	-	-	65°C
verd.: ca. 10%ig nach [1] und [6]				

Tabelle 20: Einsatztemperaturen verschiedener Materialien bei wässrigen Lösungen

JUMO, FAS 146, Ausgabe 2007-01

8.5.1 Schutzrohr-Materialien bei Schmelzen

Allgemein muss in Schmelzen von einer verkürzten Lebensdauer der Schutzrohre ausgegangen werden. Aluminiumoxidkeramik ist in Aluminiumschmelzen nicht beständig. Besonders korrosiv wirken Schlacken. An der Grenzschicht Luft/Schmelze sollte daher das Schutzrohr unbedingt durch eine Grafit- oder Tonmuffe geschützt sein (Kapitel 8.4.1 "Metallische Schutzrohre").

Die Angaben sind Anhaltswerte und müssen ggf. unter Betriebsbedingungen überprüft werden.

Stoff	max. Temp.	Schutzrohrmaterial
Aluminium	700°C	X10 NiCr 32 20 ¹ , SiC, Graphit
Aluminium, magnesiumhaltig	700°C	Reineisen ¹
Antimon	800°C	KER 710, Graphit, SiC
Cadmium	600°C	Graphit
Calcium	900°C	Graphit
Kalium	1000°C	Stahl 18/8
Blei	600°C	St. 38.5 ¹
	700°C	St. 38.5 (hartverchromt ¹), X10 NiCr 32 20 ¹ , NiCr 60 15 ¹ , Graphit, Reineisen
Kupfer	1250°C	X10 CrAl 24 ¹ , KER 710, Graphit
Lagermetall	600°C	St. 35.8 ¹
Lithium	800°C	Tantal
Magnesium	800°C	Graphit, Reineisen
Natrium	1000°C	Stahl 18/8
Nickel	1600°C	KER 710
Silber	1200°C	KER 710
Zink	480°C	St. 38.5 ¹ , X18 CrN 28 ¹ , X10 CrAI 24 ¹
	600°C	Reineisen ¹ , Graphit, SiC
Zinn	650°C	St. 38.5 ¹ , KER 710
CuZn	900°C	X10 CrAl 24 ¹
Salpeter, Salz	500°C	St. 38.5 ¹ , Reineisen ¹
Cyan	950°C	St. 38.5 ¹ , Reineisen ¹ , X10 CrNiSi 20 25 ¹
Chloridhaltige Schmelzen	keine Angaben	X10 CrSi 18 ¹ , X10 CrAl18 ¹ ,
(außer Bariumchlorid)		X18 CrN 28 ¹ , X10 CrAI 24 ¹
Bariumchlorid	1300°C	NiCr 6015
Geschmolzene anorganische Basen	600°C	Reineisen
Glas	1500°C	KER 710, PtRh30

Tabelle 21: Schutzrohr-Materialien bei Schmelzen

8.5.2 Beständigkeit gegen Gase

Körtvelessy [1] nennt die Möglichkeit des Einsatzes von Schutzrohren aus Inconel 601 (60% Ni, 14% Fe, 23% Cr, 1.4% Al) für Brom, Jod, Chlor, Fluor, Kohlenmonoxid, Kohlendioxid und Schwefeldioxid, ohne allerdings eine Temperaturobergrenze anzugeben. Für gasförmige Kohlenwasserstoffe werden bis 800 °C Tantal-Schutzrohre empfohlen, für Fluorwasserstoff solche aus Incoloy 825 (42% Ni, 30% Fe, 21% Cr, 2.25% Cu, 3% Mo, 1% Ti). Sofern die mechanischen Bedingungen und die geforderten Ansprechzeiten es zulassen, können auch Schutzrohre aus KER 610 verwendet werden. In reduzierenden Gasen kann in einem Temperaturbereich von 900 bis 1400°C auch hitzebeständiger Stahl verwendet werden. Bei Verwendung unterhalb 900°C tritt bei diesem Material Versprödung auf.

In aufkohlenden und nitrierenden Gasen sind eisenhaltige Schutzrohre bei höheren Temperaturen stark gefährdet. Besser sind hier Materialien mit hohem Nickelanteil, wie beispielsweise Inconel 600. Auch keramische Materialien sind grundsätzlich geeignet. In der DIN 43 720 werden die relativen Beständigkeiten der in der Norm genannten Schutzrohrmaterialien gegen schwefel- und stickstoffhaltige Gase und Aufkohlung und die Anwendungstemperaturen in Luft genannt.

Inerte Schutzgase wie Argon üben keinen Einfluss weder auf das Thermomaterial noch auf das Schutzrohr aus. Gleiches gilt für den Einsatz im Vakuum. Prinzipiell ist daher - von mechanischen Gründen einmal abgesehen - kein Schutzrohr erforderlich. Stets vorhandene Verunreinigungen im Schutzgas oder in der Ofenatmosphäre können edle Elmente allerdings allmählich vergiften. Auf ein Schutzrohr oder den Einsatz eines Mantelthermoelementes sollte daher nach Möglichkeit nicht verzichtet werden. Schutzgase aus reinem Wasserstoff sind für edle Thermomaterialien schädlich. Es müssen daher stets gasdichte Schutzrohre benutzt werden. Die bereits an anderer Stelle beschriebene Wasserstoffdurchlässigkeit von stark nickelhaltigen Legierungen bei höheren Temperaturen muss dabei beachtet werden; es empfehlen sich gasdichte, keramische Rohre.

Werkstoff	bis	Beständig gegen
Zinnbronze CuSn6 F41 Werkstoff-Nr. 2.1020.26	700°C	Witterungsfest gegenüber Industrie- und Meer-Atmosphäre, neutrales Wasser und Meerwasser, Wasserdampf, schwefel- freie Kraftstoffe, Alkohole, Freon, Frigen, Lösungsmittel wie Aceton, Terpentin, Toluol.
Messing CuZn Werkstoff-Nr. 2.0321.30	700°C	Neutrales Wasser, neutrale Luft, Frigen, Freon, Alkohole, Aceton, Toluol
Kupfer SFCu F30 Werkstoff-Nr. 2.0090.30	300°C	Industrieluft, salzarmes Frisch- und Brauchwasser, neutraler Wasserdampf, Alkohole, Frigen und Freon
Stahl St. 35.8 ¹ Werkstoff-Nr. 1.0305	570°C	Wasser in geschlossenen Systemen, neutrale Gase
Stahl emailliert St. 35.8 Werkstoff-Nr. 1.0305	600°C	Wasser und Wasserdampf, heiße Säuren und Dämpfe, Rauchgas, schwefelhaltige Dämpfe und Gase, Blei-, Zinn- und Zinkschmelzen, Alkalilösungen und -schmelzen, Benzol
Reineisen ¹		Metallschmelzen und Salzschmelzen
Stahl 13 CrMo44 Werkstoff-Nr. 1.7335	600°C	Wasserdampf, Stickstoff; ähnlich St. 35.8, jedoch höhere me- chanische und thermische Beständigkeit
Rost- und säurebest. Stahl X6 CrNiTi810 Werkstoff-Nr. 1.4541 ¹	800°C	Chloridarmes Wasser, Dampf, Nahrungsmittel, Fette, Reinigungsmittel, Seifen, organische Lösungsmittel, Chloroform, Erdölverarbeitung, Petrochemie, Dieselabgase, heißes Kohlendioxid, trocken und feucht

JUMO, FAS 146, Ausgabe 2007-01

Werkstoff	bis	Beständig gegen
Rost- und säurebest. Stahl V4A X6 CrNiMoTi17122	800°C	Ähnlich wie Werkstoff-Nr. 1.4541. Erhöhte Beständigkeit gegen chloridhaltige Lösungen und nicht oxidierende Säuren (Ausnahme: Salzsäure), chemische Dämpfe, außer heißem Schwefelwasserstoff und feuchtem Schwefeldioxid
Hitzebeständiger Stahl X10 CrAl24	1150°C	Schwefelhaltige Gase unter oxidierenden und reduzierenden Bedinungen
Werkstoff-Nr. 1.4762 ¹	900°C	Kohlenstoffhaltige Gase, Messing- und Kupferschmelzen, chloridhaltige Salzschmelzen
Inconel 600 NiCr15Fe Werkstoff-Nr. 2.4816	1150°C 550°C 590°C	Reduzierende Atmosphären Schwefelhaltige Atmosphäre Chloridfreier Wasserdampf
Metallkeramik Cermotherm 2040	1600°C	Metallschmelzen aus Stahl, Gusseisen, Kupfer, Messing, Zink, Gold, Salzschmelzen in Härtebädern
Keramik KER 530	1600°C	Gase aller Art, gasdichte Innenrohre erforderlich
Keramik KER 610	1500°C	Gase aller Art, frei von Flusssäuren und Alkalidämpfen
Keramik KER 710	1500°C	Metallschmelzen (phosphor- und borsäurefrei) außer Aluminium, Glasschmelzen. Einsatz in Steinzeugbrennöfen. Resistent gegen Fluoriddämpfe, Flusssäure
Siliziumkarbid SiC	1500°C	Metallschmelzen für Aluminium-Sandguss, Aluminium-Zink- Druckguss, Kupfer- und Antimonschmelzen, Säuren und Lau- gen, Flusssäure
1. nach DIN 43 720	•	

Die Angaben sind Anhaltswerte und müssen ggf. unter Betriebsbedingungen überprüft werden.

Tabelle 22: Allgemeine Einsatzbedingungen für Schutzrohrmaterialien

90

Explosionsgeschützte Betriebsmittel

Zur Steuerung von Prozessen ist es immer wieder erforderlich, dass die Temperaturfühler auch direkt in explosive Atmosphären eingesetzt werden. Um sowohl während des Betriebes als auch im Fehlerfall eine Explosion zu vermeiden, müssen bestimmte Schutzvorkehrungen getroffen werden. Hierzu ist ab 1.7.2003 in der europäischen Gemeinschaft die Richtlinie 94/9/EG zu beachten, die die Mindestanforderungen an die Konstruktion, Produktion, Prüfung und Qualitätssicherung von explosionsgeschützten Betriebsmitteln festlegt.

Damit überhaupt eine Explosion ensteht, müssen drei Bedingungen gleichzeitig erfüllt sein :

- Zündquelle (Hitze, Strahlung, Funken),
- Sauerstoff,
- Brennbarer Stoff (Gas, Staub, Flüssigkeit).

Bei der Betrachtung dieser Kriterien ergeben sich zwangsläufig Maßnahmen zur Verhinderung einer Explosion:

- Explosionsfähige Gemische sind zu vermeiden,
- Die Menge des Gemisches ist zu begrenzen,
- Die Zündung muss verhindert werden.

Die Vermeidung einer Zündung muss bei der Konstruktion von Geräten berücksichtigt werden, indem beispielsweise der Raum, in dem sich ein explosionsfähiges Gemisch sammelt, sehr klein gestaltet wird oder indem die Aktivierungsenergie eines möglichen Zündfunkens gering gehalten wird oder die Explosion auf einen kleinen Raum begrenzt wird. Es ist in diesem Zusammenhang anzumerken, dass eine Zündquelle nicht nur ein Flamme oder Funke sein kann, sondern auch eine heiße Oberfläche.

In Europa werden die elektrischen Betriebsmittel in zwei Gruppen eingegliedert. Die Gruppe I umfasst den Einsatz in Gruben (Unter Tage). Die Gruppe II umfasst alle anderen Bereiche (Mühlen, Raffinerien, Chemie). Da die Anzahl brennbarer Gase und Dämpfe sehr groß und die Energie zur Zündung einer Explosion unterschiedlich ist, werden die explosiven Stoffe noch in weitere Gruppen (IIA, IIB, IIC) unterteilt.

Explosionsgruppe	Zündenergie	Testgas	Bereich
I	<200µJ	Methan	Schlagwetterschutz
IIA	<200µJ	Propan	
IIB	< 60µJ	Ethylen	Explosionsschutz
IIC	< 20µJ	Wasserstoff	

Tabelle 23: Gruppeneinteilung explosiver Stoffe

Zur Beurteilung der Gefährlichkeit von brennbaren Stoffen gibt es eine weitere Klassifizierung nach Zündtemperaturen und nach dem Zünddurchschlagsvermögen. Die Zündtemperatur ist die niedrigste Temperatur einer erhitzten Wand, an der sich das brennbare Gemisch gerade noch entzündet (Zündquellen sind z. B. heiße Oberflächen, Flammen, elektrisch oder mechanisch erzeugte Funken, Lichtstrahlung, Stosswellen, chemische Reaktionen).

Deshalb werden Gase / Dämpfe in Temperaturklassen eingeteilt und die Betriebsmittel entsprechend zugeordnet. Die maximale Oberflächentemperatur eines Betriebsmittels muss stets kleiner sein, als die Zündtemperatur des gefährdeten Gemisches.

Zündtemperatur/°C	Temperaturklasse
>450	T1
>300	T2
>200	T3
>135	T4
>100	T5
> 85	T6

Tabelle 24: Einteilung der Temperaturfühlerklassen nach DIN EN 50 014

	T1	T2	Т3	T4	T5	Т6
ı	Methan					
IIA	Aceton Ethan Ethylacetat Ammoniak Benzol Essigsäure Kohlendioxid Methanol Propan Toloul	Ethylalkohol i-Amylacetat n-Butan n-Butylalkohol	Benzine Diesel Kerosin Heizöl n-Hexan	Acetaldehyd Ethyläther		
IIB	Stadtgas (Leuchtgas)	Ethylen				
IIC	Wasserstoff	Ethylen			Schwefel- kohlenstoff	Ethylnitrat

Tabelle 25: Einteilung von Gasen und Dämpfen entsprechend der zündenden Oberflächentemperatur

Explosionsgefährdete Bereiche werden nach der Auftretenswahrscheinlichkeit einer gefährlichen Atmosphäre in Zonen eingeteilt :

- **Zone 0** umfasst Bereiche, in denen gefährliche, explosionsfähige Atmosphäre ständig oder langzeitig vorhanden sind.
- **Zone 1** umfasst Bereiche, in denen damit zu rechnen ist, dass gefährliche Atmosphäre gelegentlich auftritt.
- **Zone 2** umfasst Bereiche, in denen damit zu rechnen ist, dass gefährliche, explosionsfähige Atmosphäre nur selten und dann auch nur kurzfristig auftritt.

Die Zoneneinteilung erfolgt durch den Betreiber der Anlage.

9.1 Zündschutzarten

Bei Betriebsmitteln wird der Explosionsschutz durch verschiedene konstruktive Merkmale erreicht. In der Mess- und Regeltechnik wird meistens die nachstehende Zündschutzart "i" eingesetzt. Allgemeine Anforderungen für alle Zündschutzarten werden in der Norm DIN EN 50 014 beschrieben. Die Besonderheiten der einzelnen Zünschutzarten werden wiederum in weiteren Normen beschrieben (DIN EN 50 015 ... DIN EN 50 020).

9.1.1 Zündschutzart Eigensicherheit "i" nach DIN EN 50 020

Diese Zündschutzart beschränkt sich nicht alleine an die Konstruktionsmerkmale eines elektrischen Betriebsmittels, sondern gilt für den gesamten Stromkreis, der im explosionsgefährdeten Bereich eingesetzt wird. Ein Stromkreis ist eigensicher, wenn kein Funke und kein thermischer Effekt (im normalen Betreib oder Fehlerfall) auftritt, der eine Explosion auslöst. Anders ausgedrückt: im Normal- und Fehlerfall darf durch ein Kurzschluss im Stromkreises kein Funke entstehen oder durch den fließenden Strom die Geräte sich nicht über die festgelegte Temperaturklasse erwärmen.

Damit ein Stromkreis als eigensicher bezeichnet werden kann, müssen alle in dem Kreis befindlichen Geräte eigensicher ausgelegt sein. Ferner muss geprüft werden, dass auch die Zusammenschaltung der eigensicheren Geräte die Anforderung eines eigensicheren Stromkreises erfüllen. Die Zusammenschaltung beliebiger eigensicherer Geräte alleine garantiert noch nicht einen eigensicheren Kreis.

9.1.2 Temperaturfühler und Explosionsschutz

Elektrische Betriebsmittel innerhalb explosionsgefährdeter Bereiche und zugehörige Betriebsmittel ausserhalb explosionsgefährdeter Bereiche der Katgorien M1 bzw. 1 (Zone 0) und M2 bzw. 2 (Zone 1) müssen eine EG-Baumusterprüfung unterzogen werden. Durch eine von den EU-Mitgliedsstaaten benannte Stelle wird die Einhaltung der einschlägigen Normen überprüft sowie die erforderlichen Prüfungen durchgeführt. Ausserdem müssen die Hersteller die Produktion dieser Geräte einem regelmässigen Überwachungsaudit durch eine benannte Stelle unterziehen. JUMO ist im Besitz dieser Zertifizierung und hat damit die Erlaubnis, bauartzugelassene Betriebsmittel gemäss der europäischen Richtlinie zu produzieren.

Die bestimmungsgemässe Verwendung der Geräte und der zugehörigen Betriebsmittel sind Grundvoraussetzungen für den Explosionsschutz. Dazu sind neben den spezifischen Anforderungen für die Projektierung, Auswahl und Errichtung elektrischer Anlagen in explosionsgefährdeten Bereichen (z. B EN 60 079-14) die Informationen des Herstellers (EG-Baumusterprüfbescheinigung, Kennzeichnungen am Gerät, zugehörige Bedienungsanleitung, usw.) zu beachten.

9.2 Der eigensichere Stromkreis

Um es noch einmal zu verdeutlichen: der eigensichere Stromkreis ist so aufgebaut, dass keine Explosion stattfinden kann. Die gespeicherte Energie (z. B. Kapazitäten, Induktivitäten, Netzgeräte) reicht nicht bei einem Kurzschluss einen Funken zu erzeugen. Ferner liegt die Erwärmung der Bauteile durch den Stromfluss (auch im Fehlerfall) unter der jeweiligen Zündtemperatur.

Damit ergeben sich wichtige Kenngrössen, die einen eigensicheren Stromkreis charakterisieren :

- Kapazität,
- Induktivität,
- Maximale Spannung,
- Maximaler Strom,
- Maximale Leistung,
- Eigenerwärmungsverhalten,
- Statische Aufladung.

9.3 Zusammenschalten von elektrischen Betriebsmitteln

Bei der Installation sind oft nur zwei Geräte in den Stromkreis geschaltet; das eigensichere (Messumformer, Sensor) und das zugehörige Betriebsmittel (Interface). In diesem, einfachen Fall ist die Prüfung der Eigensicherheit recht einfach: Man vergleicht die Werte in den Bescheinigungen und der Betreiber/Errichter führt damit den sogenannten Nachweis der Eigensicherheit.

Im einfachsten Fall befindet sich im Ex-Bereich ein Betriebsmittel (Schalter, Thermoelement, Pt 100). Bei diesen einfachen Betriebsmitteln muss man eventuelle Energiespeicher (Anzeiger) sowie die Isolation gegen Erde bzw. gegen andere explosionsgeschützte eigensichere Kreise beachten. Die verwendeten Materialien müssen der EN 50 014 entsprechen (Magnesiumanteil \leq 6 %, Oberflächenwiderstand \leq 10 $^9\Omega$).

Zudem muss eine Temperaturklasse definiert sein bzw. müssen Angaben zur Oberflächentemperatur gemacht werden. Gibt das angeschlossene Gerät (z. B. Messumformer, Regler, etc.) im Normaloder Fehlerfall eine bestimmte Leistung ab, so kann das beim Betriebsmittel zu einer unzulässig hohen Eigenerwärmung an der Oberfläche führen und damit eine Explosion auslösen.

Ein Widerstandsthermometer wird im Normalfall mit einem Messstrom betrieben, der eine vernachlässigbare Eigenerwärmung hervorruft. Im Fehlerfall der angeschlossenen Elektronik kann jedoch der Fall eintreten, dass ein unzulässig hoher Strom durch das Thermometer fliesst. Die Eigenerwärmung steigt an und die zulässige Oberflächentemperatur der gewählten Temperaturklasse wird überschritten. Durch Untersuchungen bei bestimmten Messbedingungen wird eine Schutzrohrkonstante für das jeweilige Thermometer ermittelt. Mit dieser Konstante lässt sich anhand der technischen Daten der angeschlossenen Elektronik die maximale Oberflächentemperatur berechnen. Mit der Schutzrohrkonstante SK ergibt sich folgender Zusammenhang:

Formel 32:

$$T_S = T_K - (P_i \cdot SK)$$

- T_S Höchstzulässige Temperatur an der Fühlerspitze
- T_K Höchstzulässige Oberflächentemperatur in Abhängigkeit der Temperaturklasse
- P_i Leistung des bescheinigten eigensicheren Stromkreises
- SK Schutzrohrkonstante; äusserer Wärmewiderstand des Fühlers (Fühleroberfläche zur Umgebung)

Beispiel:

Ein Thermometer besitzt eine Schutzrohrkonstante von 66 K/W.

Es ergibt sich folgender Zusammenhang:

Formel 33:

$$T_S = T_K - (P_i \cdot 66 \text{ K/W})$$

Tritt im eigensicheren Stromkreis eine maximale Leistung von 0,75W auf und soll der Temperaturfühler für die Temperaturklasse T4 geeignet sein, so ist für T_K ein Wert von $130\,^{\circ}C = 135\,^{\circ}C$ (Grenze T4) - $5\,^{\circ}C$ (Sicherheit) einzusetzen. Hieraus folgt für die maximale Messtemperatur an der Fühlerspitze $T_S = 80,5\,^{\circ}C$. Soll eine höhere Mediumstemperatur gemessen werden, so muss eine Elektronik ausgewählt werden, die im Fehlerfall eine geringere Leistung abgibt. In diesem Zusammenhang sei auf den JUMO Messumformer dTRANS T01 hingewiesen, der im Fehlerfall **nur** eine maximale Leistung von 11 mW abgibt. Bei dieser Leistung erwärmt sich ein Messeinsatz eines Widerstandsthermometers für die Prozesstechnik um weniger als 1 K.

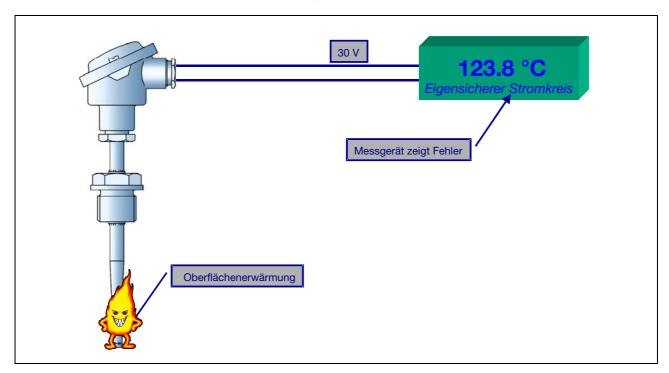


Abbildung 54: Warum kommt es zu einer kritischen Oberflächentemperatur?

Wird ein eigensicherer Messumformer im Anschlusskopf eines Thermometers eingebaut, muss sichergestellt sein, dass die Grenzwerte für den Messumformer im Anschlusskopf im Fehlerfall ebenfalls eingehalten werden. Durch die Verlustleistung im Messumformer erwärmt sich der Innenraum des Anschlusskopfes. Zusätzlich fließt Wärme über die Schutzarmatur des Thermometers in den Anschlusskopf und erhöht ebenfalls die Innenraumtemperatur.

In Abhängigkeit von der Umgebungstemperatur des Anschlusskopfes kann dann mit dem Erhöhungswert im Kopf unter Berücksichtigung der Grenzwerte in Abhängigkeit von der jeweiligen Temperaturklasse des Messumformers ermittelt werden, ob der Grenzwert eingehalten wird und damit der Messumformer im Anschlusskopf im explosionsgefährdeten Bereich zulässig eingesetzt werden kann.

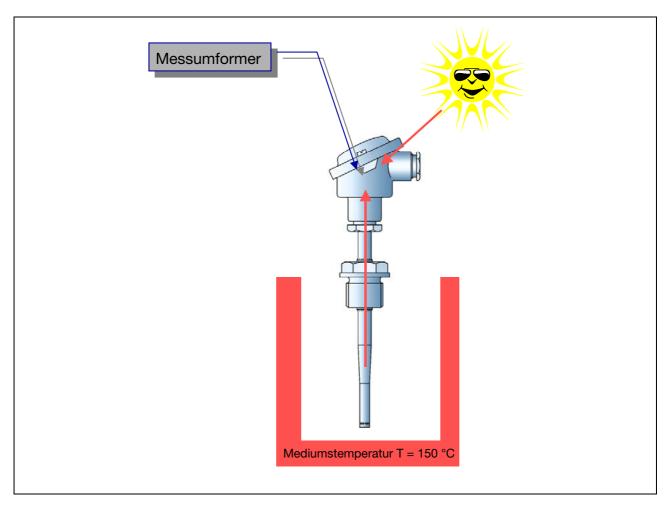


Abbildung 55: Kopfthermometer mit Messumformer

Beim Zusammenschalten von einem Messumformer mit einem Interfacebaustein vergleicht man die U_0 (U_k), I_0 (I_k), und P_0 (P_{max}) Werte mit den U_i (U_{max}), I_i (I_{max}) und P (P_{max}) Werten (frühere Bezeichnung in Klammer). Zum Nachweis der Eigensicherheit prüft man zuerst folgendes:

- $U_0 \le U_i$ und
- $I_0 \le I_i$ und
- $P_0 \le P_i$.

Sind diese Bedingungen erfüllt, vergleicht man die $L_0(L_a)$ -/ $C_0(C_a)$ -Werte mit den L_i /Ci-Werten. Es gilt:

- $C_i \le C_0 (C_a)$ und
- $L_i \leq L_0 (L_a)$.

Weil auch die Leitung einen L- bzw. C-Betrag hat, sollten L_i/C_i wesentlich kleiner sein, als L_0/C_o . Sind im Stromkreis keine weiteren Energiespeicher vorhanden, ermittelt man jetzt die resultierende Leitungslänge auf Basis des L/C-Betrages pro km. Dabei ist meist die Kapazität kritisch.

- C_{leitung} = Co Ci
- $C_{belag} = z.B. 120 nF/km$
- I_{leitung} = C_{leitung}/120 [km]

Der gleiche Ansatz gilt auch für L; der jeweils kleinere $I_{leitung}$ -Wert ist dann zulässig. Befinden sich im Stromkreis noch weitere Induktivitäten L' oder Kondensatoren C' (Filter, Anzeiger), müssen sie im o. g. Ansatz berücksichtigt werden:

- C_{leitung} = Co Ci C' bzw.
- L_{leitung} = Lo Li L'

In seltenen Fällen sind konzentrierte Kapazitäten und Induktivitäten gleichzeitig vorhanden:

- Maximal zulässige Spannung,
- Maximal zulässiger Strom,
- Maximal zulässige Leistung,
- Energiespeicher
 - Angabe der inneren Kapazität
 - Angabe der inneren Induktivität,
- Materialien,
- Oberflächenwiderstand,
- Isolation und Abstände zum eigensicheren Stromkreis,
- Eigenerwärmungsverhalten/Temperaturklasse.

All diese Punkte sind konstruktive Merkmale, die für jede Ausführungsform eines Thermometers zu prüfen sind. Dabei müssen in Form einer Typprüfung das Eigenerwärmungsverhalten und die maximal zulässigen Werte für Spannung, Strom und Leistung ermittelt werden.

JUMO hält ein umfassendes Fühlerprogramm bereit, dass gemäß den neuen europäischen Richtlinien zugelassen und mit Auslieferung bescheinigt wird.

9 E	solax	ionsgesc	hütz	te Bet	riebsm	nittel
-----	-------	----------	------	--------	--------	--------

Die Messunsicherheit

Wenn im täglichen Sprachgebrauch von Unsicherheit gesprochen wird, vermittelt das den beteiligen Personen kein Gefühl von Vertrauen. Im technischen Bereich ist der Sachverhalt jedoch anders gelagert. Erst die Angabe der Messunsicherheit im Zusammenhang mit einem Messergebnis liefert Vertrauen und Sicherheit in den durchgeführten Messvorgang. Die Kenntnis der Messunsicherheit liefert die Qualität und Vertrauen in das Ergebnis. Kein Messprozess ist frei von Unzulänglichkeiten und zufälligen Schwankungen. Mehrfache Wiederholung unter gleichen Messbedingungen liefert nicht exakt das gleiche Ergebnis. Zu den Ursachen gehören kurzzeitige Schwankungen (Umgebungstemperatur, Netz), Leistungsfähigkeit des Beobachters (manuelles Ablesen von Messgeräten), systematische Effekte, Nullpunktabweichung, Drift des Normals oder Unsicherheit eines Referenzwertes.

Der fehlerfreie Wert einer Messgröße kann nur mit einem idealen Messsystem ermittelt werden. Dieser fehlerfreie Wert wird als der "wahre Wert" bezeichnet und bleibt unbekannt, da jedes Messsystem Unzulänglichkeiten und Schwankungen unterliegt. Das Ziel jedes Messvorganges liegt also darin, mit dem Messergebnis so nah wie möglich an den wahren Wert heran zu kommen. Durch mehrfache Wiederholung unter gleichen Bedingungen und der Voraussetzung, dass kein systematischer Fehler vorliegt, nähert sich der Mittelwert immer näher an den wahren Wert. Für den Grenzfall, dass die Messreihe unendlich viele Messwerte aufweist, entspricht der Mittelwert dem wahren Wert.

Die Messunsicherheit setzt sich prinzipiell aus zwei unterschiedlichen Anteilen zusammen:

Systematische Messabweichungen

- Systematische Messabweichungen liegen vor, wenn unter gleichen Messbedingungen der gleiche Betrag und das gleiche Vorzeichen für den Messfehler ermittelt werden. Systematische Messabweichungen können vorhergesagt und korrigiert werden.
- Beispiel:
 Eine kalibrierte Messkette hat bei 100°C laut Kalibrierschein einen Anzeigefehler von -0,3°C ->
 am Einsatzort kann der Anzeigewert des Messgerätes um +0,3°C korrigiert werden.

Statistische Messabweichung

- Es handelt sich um zufällige Messabweichungen, die nicht korrigierbar sind. Durch eine Mehrfachmessung unter gleichen Messbedingungen kann die Größe bestimmt werden. In der Regel handelt es sich bei zufälligen Messabweichungen um eine Normalverteilung um einen Mittelwert. 68,3% aller Messwerte liegen innerhalb der Standardabweichung der Normalverteilung. Die doppelte Standardabweichung (K = 2) ergibt eine Wahrscheinlichkeit von 95,4%.

99

10 Die Messunsicherheit

10.1 Der Messprozess

Im Jahre 1992 wurde der Begriff der Messunsicherheit durch den ISO/BIPM "Guide to the expression of uncertainty in measurement" (im Folgenden abgekürtzt: GUM) neu geprägt. Er ist in der Zwischenzeit international als die Basis für die Bestimmung der Messunsicherheit anerkannt.

Bei einer Messung spielen im Allgemeinen mehrere Einflussgrössen eine Rolle, die über einen Funktionalzusammenhang das Messergebnis Y abbilden.

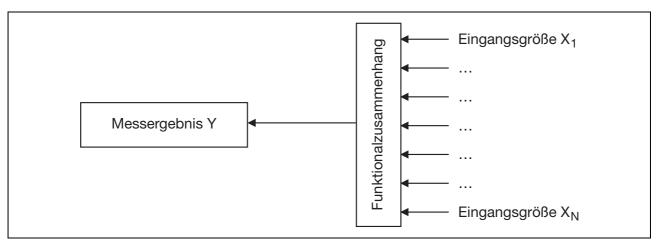


Abbildung 56: Der Messprozess

Jeweils kleine Abweichungen der Eingangsgrössen X_i (i = 1,...,N) wirken sich gemäss der zugehörigen Empfindlichkeit des Funktionalzusammenhangs auf das Ergebnis Y aus. Für eine Messunsicherheitsbetrachtung ist es damit von Wichtigkeit, die Relation zwischen den Eingangsgrößen und dem Messergebnis als Funktion zu bestimmen.

100

10.2 Die naive Sicht: Unsicherheitsintervall

Die Messunsicherheit ist ein aus vielen Messungen gewonnener Kennwert, der zusammen mit dem Messergebnis den Bereich der Werte kennzeichnet, der mit den Messbedingungen zusammen als die verträglichen Werte betrachtet werden kann.

Die naive Sicht der Messunsicherheit betrachtet den gesamten Bereich der verträglichen Werte als ein Unsicherheitsintervall, ohne die darin enthaltenen Werte zu wichten.

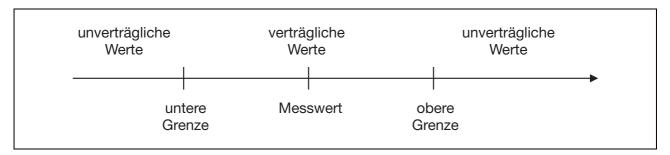


Abbildung 57: Abb. 57: Das Unsicherheitsintervall

Diese Sicht der Messunsicherheit ist für Messungen akzeptabel, bei denen nur wenige Einflussgrößen in der Zuordnung auftreten. Die naive Sicht der Messunsicherheit ist daher nur für gewisse, recht grobe Klasseneinteilungen sinnvoll. Sie ist keine Basis für ein vielseitiges Qualitätsmaß.

Ein Punkt entfaltet jedoch schon in der naiven Sicht seine volle Problematik: der Nachweis der Übereinstimmung eines Wertes mit einer Spezifikation. Wird die Messunsicherheit mit einem Unsicherheitsintervall einbezogen, entsteht neben den Bereichen der Übereinstimmung und der Nicht-Übereinstimmung ein sog. Unsicherheitsbereich (oder besser Indifferenzbereich). Eine eindeutige Übereinstimmung bzw. Nicht-Übereinstimmung ist nur gegeben, wenn der Messwert in den entsprechenden Bereichen liegt. Werte im Unsicherheitsbereich müssen spezieller beurteilt werden.

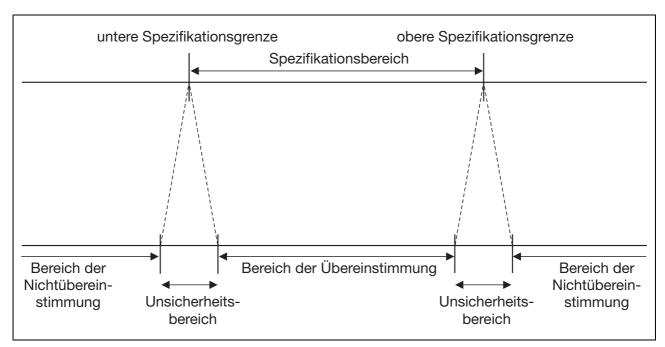


Abbildung 58: Bereiche der Übereinstimmung und Nicht- Übereinstimmung eines Messwertes mit einer Spezifikation

10 Die Messunsicherheit

10.3 Die GUM-Sicht: Standardmessunsicherheit

Das GUM liefert eine andere Sichtweise der Messunsicherheit. Die Angabe eines Unsicherheitsintervalles ist zu global. Sie berücksichtigt nicht, dass nicht alle mit den Messbedingungen verträglichen Werte die gleiche Chance der Realisierung haben. Meist weiß man aus speziellen Kenntnissen bzw. grundsätzlichen Überlegungen, dass Werte nahe der Mitte des Unsicherheitsintervalles wahrscheinlicher sind als Werte nahe den Grenzen. Es gibt auch Fälle, in denen das umgekehrt ist. Das GUM geht von Verteilungen, genauer Wahrscheinlichkeitsverteilungen, der verträglichen Werte aus. Dies wird auch deutlich, wenn man eine Messreihe mit zufälligen Schwankungen durchführt und die Häufigkeit der Messwerte über den Messwerten aufträgt. Alle Messwerte treten nicht gleich wahrscheinlich auf. Messwerte nahe dem Mittelwert sind häufiger als Werte, die weiter vom Mittelwert entfernt sind. Die Häufigkeitsverteilung spiegelt die Auftretenswahrscheinlichkeit eines Messwertes für die gegebenen Messbedingungen wieder. Je schmaler die Wahrscheinlichkeitsverteilung ist, umso kleiner ist auch die Messunsicherheit der Messanordung.

Der Messwert ist der mit der Verteilung gebildete Erwartungswert, die ihm beigeordnete Messunsicherheit ist die Standardabweichung. Sie ergibt sich als die positive Quadratwurzel aus der Varianz: Für den Erwartungswert einer Messreihe wird der Mittelwert der Einzelwerte angesetzt. Damit ergibt sich:

Formel 34, Mittelwert:

$$x_0 = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Formel 35, Empirische Varianz (Standardunsicherheit):

$$u(x_i) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - x_0)^2}$$

Aus statisitschen Betrachtung ergibt sich, dass im Intervall der Standardunsicherheit um den Mittelwert ca. 68,3% aller Messwerte liegen. Anders ausgedrückt kann man auch sagen, dass bei einer wiederholten Messung unter gleichen Bedingungen die Wahrscheinlichkeit 68,3% beträgt, den Messwert im Intervall mit einer Breite der Standardunsicherheit um den Mittelwert wieder zu finden.

Für die Bestimmung der Standardmessunsicherheiten, die den Eingangswerten beigeordnet sind, werden im GUM zwei Unsicherheitstypen angeben:

Der **Typ A** ist anzuwenden, wenn eine Eingangsgröße wiederholt beobachtet wird und dabei unterschiedliche Werte festgestellt werden (Wiederholungsmessung). Die Auswertung erfolgt dann nach statistischen Methoden. Der Wert ist der arithmetische Mittelwert der Beobachtungen (Formel 34). Die beizuordnende Standardmessunsicherheit berechnet sich mit Formel 35. Damit die so bestimmte Standardmessunsicherheit einen statistisch verlässlichen Wert darstellt, sollten mindestens 20 - 30 Beobachtungen gemacht werden.

Die **Typ B** ist anzuwenden, wenn der vollständige Wert einer Eingangsgröße, d.h. Messwert und beigeordnete Messunsicherheit, bekannt sind oder aus der messtechnischen Erfahrung eine bestimmte Verteilung angenommen werden kann. Im ersten Fall sind der Messwert und beigeordnete Messunsicherheit direkt gegeben, man kann sie übernehmen. In Kalibrierscheinen wird die beigeordnete erweiterte Messunsicherheit angegeben; man erhält die Standardmessunsicherheit, indem man die erweiterte Messunsicherheit durch den mitgelieferten Erweiterungsfaktor dividiert. Kann man eine bestimmte Verteilung voraussetzen, wie bei der Auflösung eines digitalen Messgerätes, verwendet man die entsprechenden Formeln zur Bestimmung der Standardabweichung. Ein typischer Fall des Typ B ist die Angabe einer Messunsicherheit im Datenblatt. Hier weiß man nur, dass sich der Messwert innerhalb des angegebenen Intervall befindet. Mit welcher Wahrscheinlichkeit der Messwert in der Mitte des Intervalls oder an seinem Rand auftritt, ist nicht bekannt.

JUMO, FAS 146, Ausgabe 2007-01

Die drei wichtigsten Verteilungsfunktionen für die Auftretenswahrscheinlichkeit sind :

- Die Rechteckverteilung,
- Dreiecksverteilung,
- Normalverteilung.

10.3.1 Die Rechteckverteilung

Wenn nur das Intervall bekannt ist, in dem alle Messwerte liegen können, muss von einer Rechteckverteilung ausgegangen werden. Das bedeutet, dass die Messwerte innerhalb des Intervalls mit gleicher Wahrscheinlichkeit auftreten können; außerhalb des Intervalls beträgt die Auftretenswahrscheinlichkeit Null. Beispiel hierfür sind die Angaben in Datenblättern.

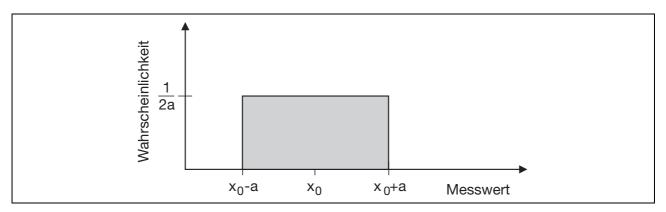


Abbildung 59: Rechteckverteilung

Aus der Intervallbreite a wird die Standardunsicherheit u wie folgt berechnet:

Formel 36:

$$u = \frac{a}{\sqrt{3}}$$

Diese Standardunsicherheit gibt das Intervall an, in dem 68,3 % aller Messwerte auftreten.

10 Die Messunsicherheit

10.3.2 Die Dreiecksverteilung

Die Verteilung der Werte einer Summe bzw. Differenz zweier Eingangsgrößen ist stärker um den Ergebniswert konzentriert. Hieraus resultiert die Dreiecksverteilung, die aus der Differenz zweier rechteckförmiger Verteilungen gleicher Halbweite entstanden ist. Diese Verteilungsfunktion ist zum Beispiel anzuwenden, wenn zwei Messwerte mit dem gleichen Messgerät bestimmt werden.

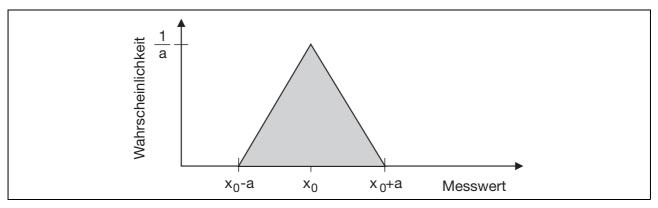


Abbildung 60: Dreiecksverteilung

Die Standardmessunsicherheit u der Dreiecksverteilung wird aus der Intervallbreite a berechnet: Formel 37:

$$u = \frac{a}{\sqrt{6}}$$

10.3.3 Die Normalverteilung

Liegen drei oder mehr Messwerte vor, so darf mit guter Näherung eine Normalverteilung angenommen werden. Die Standardmessunsicherheit u enspricht dann der empirischen Standardmessunsicherheit, siehe Formel 35.

104

10.4 Die Bestimmung der Messunsicherheit nach dem GUM

Da die Messunsicherheit immer einem Messwert beigeordnet ist, ist die Messunsicherheitsanalyse untrennbar mit der Bestimmung des Messwertes verknüpft. Nach dem GUM erhält man den Messwert durch Einsetzen der Werte der Eingangsgrößen in die Modellfunktion. Zu jeder Eingangsgrösse gehört auch eine Standardmessunsicherheit. Aus der Modellgleichung ist die Sensitivität (Empfindlichkeit) für die jeweilige Eingangsgrösse zu ermitteln (Hinweis: partielle Ableitung des Funktionalzusammenhangs nach der Eingangsgrösse). Und mit der Standardmessunsicherheit der Eingangsgröße zu multiplizieren. Das Quadrat der beigeordneten Standardmessunsicherheit des Messwertes ergibt sich als Summe aus den Quadraten der Unsicherheitsbeiträge der einzelnen Eingangsgrößen

Formel 38:

$$u(Y) = \sqrt{u_1^2(Y) + u_2^2(Y) + ... + u_N^2(Y)}$$

- u(Y) = Standardmessunsicherheit des Messergebnisses Y in Abhängigkeit von allen Eingangsparametern mit ihren Messunsicherheiten
- $u_i(Y)$ = Messunsicherheitsanteil des Messergebnisses Y infolge der Messunsicherheit des Eingangsparameters X_i

Die so berechnete Standardmessunsicherheit spiegelt das Intervall um den Mittelwert wieder, in dem mit einer Wahrscheinlichkeit von 68,3 % alle Messwerte der Messreihe liegen.

ODER: Mit einer Wahrscheinlichkeit von 68,3% bei Wiederholung der Messung unter gleichen Bedingungen das Messergebnis in diesem Intervall wieder zu finden ist.

10.5 Die industriell-ökonomische Sicht: Erweiterte Messunsicherheit

Zum Nachweis der Übereinstimmung eines Messwertes mit einer Spezifikation ist die Standardmessunsicherheit nicht geeignet. Sie gibt zwar die Qualität eines Messergebnises an, für den Nachweis der Übereinstimmung benötigt man jedoch einen Bereich, der einen hohen Anteil der Werte umfasst, die mit den Messbedingungen verträglich sind. In Industrie und Wirtschaft ist deshalb die erweiterte Messunsicherheit (engl. expanded uncertainty of measurement) gebräuchlich, die aus der Standardmessunsicherheit abgeleitet wird. Sie ist definiert durch den Erweiterungsfaktor (engl. coverage factor). Der Erweiterungsfaktor wird so gewählt, dass das Unsicherheitsintervall einen hohen Anteil an Werten überdeckt. Der überdeckte Anteil wird Überdeckungswahrscheinlichkeit (engl. coverage probability) genannt. Damit steht wieder ein Unsicherheitsintervall zur Verfügung, dass für Vergleiche verwendet werden kann. Der Vorteil ist, dass die Berechnung über den Zwischenschritt der Standardmessunsicherheit ein Verfahren nutzt, das die Häufigkeitsstatistik und Beurteilungswahrscheinlichkeit in sich vereint. Man hat sich international darauf geeinigt, bei Kalibrierungen für die Berechnung des Erweiterungsfaktors eine einheitliche Überdeckungswahrscheinlichkeit von 95% zu verwenden. Damit ergibt sich für den Erweiterungsfaktor K der Wert 2. Die Gesamtmessunsicherheit U einer Messung mit einer Wahrscheinlichkeit von 95 % ergibt sich aus Mulitplikation der Standardmessunsicherheit u(Y) mit dem Faktor 2.

Formel 39:

$$U = 2 \cdot u(Y)$$

10 Die Messunsicherheit

10.6 Messunsicherheitsanteile einer Temperaturmesskette

Grundsätzlich müssen bei der Berechnung der Gesamtmessunsicherheit einer Temperaturmesskette alle Einzelanteile (Auswerteelektronik, Anzeige, Zuleitung, Sensor) einbezogen werden.

Der Sensor liefert ein temperaturabhängiges Signal, dass über die Zuleitung zur Auswerteelektronik geleitet wird und dort letztendlich in eine Temperaturanzeige bzw. in ein Stromsignal gewandelt wird. Die Fehlerquellen aller drei Komponenten sind in die Messunsicherheitsbetrachtungen einzubeziehen. D. h., bei Verwendung von Messumformern ergeben sich bei der Wandlung in eine Temperaturanzeige nochmals zusätzliche Messunsicherheitsanteile.

Formel 40: Die Modellgleichung/

Funktionalzusammenhang zwischen Eingangsgrößen und Messergebnis:

 $I_X = t_m + \sigma M_F + \sigma M_D + \sigma M_A + \sigma M_E + \sigma M_{Th} + \sigma M_{RI} + \sigma R_{AL} + \sigma V + \sigma t_M + \sigma t_W + \sigma_B$

I_X	Ausgangssignal (angezeigte Temperatur oder Temperaturäquivalent)
t _m	Temperatur an der Messstelle
σM_{F}	Messsignalabweichung auf Grund des Wärmeableitfehlers des Thermometers
σM_D	Messsignalabweichung auf Grund der Abweichung des Sensors zur DIN EN 60751
σM_A	Messsignalabweichung auf Grund ungenügender Austemperierung
σM_{E}	Messsignalabweichung auf Grund der Eigenerwärmung des Sensors
	(Widerstandsthermometer)
σM_{Th}	Messsignalabweichung auf Grund von Thermospannungen (Widerstandsthermometer)
σM_{RI}	Messsignalabweichung auf Grund zu geringem Isolationswiderstand
	(Widerstandsthermometer)
σR_{AL}	Schwankung des Leitungswiderstandes (Widerstandsthermometer)
σV	Anzeigeabweichung der Auswerteelektronik auf Grund von Schwankungen der Spannungsversorgung
σt_{M}	Anzeigeabweichung auf Grund schwankender Umgebungstemperatur
σt_W	Verarbeitungs- und Linearisierungsfehler der Auswerteelektronik
σ_{B}	Anzeigeabweichung auf Grund des Einflusses des Eingangswiderstandes (Bürde)

Wärmeableitfehler des Temperaturfühlers (σM_E)

Die zu messende Temperatur liegt in Anschlussleitungen allgemein über- oder unterhalb der Umgebungstemperatur. Durch das Temperaturgefälle innerhalb des Thermometers entsteht ein Wärmestrom, der zu einer Abkühlung bzw. Erwärmung des Sensors und letztendlich zu einer fehlerhaften Anzeige führt. Der Großteil der Wärme wird über die Anschlußleitungen zu- bzw. abgeführt.

Der aus dem unerwünschten Wärmestrom resultierende Anzeigefehler ist der Wärmeableitfehler.

Der Wärmeableitfehler ist in erheblichem Maß von den konstruktiven Eigenschaften des Thermometers und dessen Einbaulänge im Messmedium abhängig. Im Allgemeinen ist bei Einbaulängen unter 80mm mit einem Wärmeableitfehler zu rechnen. Der Wärmeableitfehler wird mit steigender Temperaturdifferenz zwischen Umgebung und Messmedium größer.

Maßnahmen zur Reduzierung des Wärmeableitfehlers durch den Anwender:

- Zusätzliche Tauchhülsen vermeiden.
- Größtmögliche Eintauchtiefe wählen (Thermometer z. B. in Rohrbogen einbauen),
- Thermometer am Ort mit höchster Strömungsgeschwindigkeit einbauen,

- Äußere Teile des Thermometers (z. B. Anschlusskopf) mit zusätzlicher Wärmedämmung versehen.
- Thermometer mit kleiner äußerer Fläche einsetzen,
- Abschätzung des Wärmeableitfehlers und Reduzierung der Eintauchtiefe um zum Beispiel 10% und gleichzeitiger Beobachtung der Temperaturanzeige.

Abweichung der Temperatursensoren zur Normkennlinie (σM_D)

Die Auswerteelektronik ist in der Regel auf Temperatursensoren einjustiert, die exakt den entsprechenden Normkennlinien (für Platin-Widerstandsthermometer DIN EN 60 751; für Thermoelemente DIN EN 60 584) entsprechen. Die Sensoren halten die Normkennlinien jedoch nur in den seltensten Fällen ein, sondern es sind Toleranzklassen zugelassen.

So berechnet sich die zulässige Toleranz für einen Platinsensor der Toleranzklasse B aus (± 0.3 K +0.005 T · ITI) (T = Messtemperatur). Bei 100°C ergibt sich also eine zulässige Toleranz von ± 0.8 °C.

Es ergeben sich zwei Möglichkeiten, diesen Fehler einzuschränken:

- engere Toleranzklasse verwenden (für DIN A erhält man für 100° C eine zulässige Toleranz von $0.15 + 0.0017 \cdot 100^{\circ}$ C = 0.32° C,
- Eingabe der Kennlinienkoeffizienten (R₀, A, B) des Temperaturfühlers in die Auswerteelektronik (natürlich muss dies vorgesehen sein). Dazu muss der Temperaturfühler bei mindestens drei Temperaturen im Messbereich ausgemessen werden. Der Messunsicherheitsanteil des Temperatursensors wird damit auf die Messunsicherheit bei der Temperaturmessung eingeschränkt.

Austemperierung (σM_A)

Wegen der stets vorhandenen thermischen Widerstände nimmt der Temperatursensor nie sofort die Temperatur des Messmediums an, sondern immer verzögert. Diese Verzögerung wird durch die Wärmeübergangskoeffizienten Sensor - Füllmaterial - Metallschutzrohr - Messmedium bestimmt und ist somit eine konstruktive Kenngröße des Temperaturfühlers.

Auskunft über das Ansprechverhalten gibt die Sprungantwort. Da die Ansprechzeit in starkem Maße von der Strömungsgeschwindigkeit, dem verwendeten Messmedium und der Eintauchtiefe abhängig ist, wurden in der DIN EN 60 751 Parameter für die Aufnahme der Sprungantwort in Luft und Wasser festgelegt. In den Datenblättern der Temperaturfühler ist die Angabe der Halbwertzeit t_{05} (Messwert hat 50% des Endwertes erreicht) und der Neunzehntelzeit t_{09} (90% des Endwertes erreicht) üblich. Bei Messungen in Luft sind dabei durchaus t_{09} Zeiten von 5 Minuten und mehr möglich.

Die bereits erläuterten Maßnahmen zur Reduzierung des Wärmeableitfehlers führen auch zu einer Verringerung der Ansprechzeiten. Des Weiteren muss der Anwender auf eine genügende Austemperierung achten, bevor z. B. Messwerte protokolliert werden.

Eigenerwärmung (σM_F) von Widerstandsthermometern

Der Messstrom, der durch den Temperatursensor fließt, erzeugt Wärme und führt zu einer systematisch höheren Temperaturanzeige. Die eingebrachte Leistung beträgt dabei $P = R \cdot I^2$. Eine Angabe erfolgt in der Regel durch den Hersteller in der Form des Eigenerwärmungskoeffizienten (E_K in mW/°C).

Eine Reduzierung des Messstromes führt stets zu einer Verringerung der Eigenerwärmung. Wird der Spannungsabfall über dem Widerstandsthermometer jedoch zu gering, führt dies bei einigen

10 Die Messunsicherheit

handelsüblichen Messgeräten zu einer erhöhten Messunsicherheit. Es werden daher folgende Messströme empfohlen:

Nennwert/ Ω	Bereich Messstrom in mA
100	0,5 - 1,0
1000	0,1 - 0,3

Tabelle 26: Empfohlene Messströme bei Widerstandsthermometern

Die Messströme sind so angegeben, dass eine Verlustleistung von 0,1K bei 0°C nicht überschritten wird, der Eigenerwärmungsfehler kann dann in den meisten Fällen vernachlässigt werden.

Der Eigenerwärmungskoeffizient ist von dem Wärmeübergangskoeffizienten zwischen Thermometer und Messmedium abhängig. Zur Vergleichbarkeit werden die Herstellerangaben stets im Eis/Wassergemisch (0°C) bei einer Verlustleistung von 5mW ermittelt. Dabei entspricht der Eigenerwärmungskoeffizient des Temperatursensors nicht dem des kompletten Thermometers.

Für den Eigenerwärmungsfehler erhält man bei gegebenem Thermometerstrom und bekanntem Eigenerwärmungskoeffizienten:

Formel 41:

$$\Delta t = \frac{I^2 \cdot R}{E_K}$$

Bei gegebenem Messstrom wird der Eigenerwärmungsfehler durch die Verwendung eines Sensors mit kleinerem Widerstandsnennwert verringert.

Weiterhin kann man dem Eigenerwärmungsfehler durch einen guten Wärmeübergang zwischen Messmedium und Temperaturfühler verringern (z. B. möglichst hohe Strömungsgeschwindigkeit). D. h., insbesondere bei Messungen in Gasen muss der Eigenerwärmungsfehler beachtet werden.

Thermospannungen bei Messungen mit Widerstandsthermometern (σM_{Th})

Ein Messkreis besteht aus einer Kette unterschiedlicher Leiterwerkstoffe. Jede Verbindungsstelle bildet ein Thermoelement, wenn zwischen den beiden Verbindungsstellen (z. B. Verbindungen zwischen der zweiadrigen Anschlussleitung und dem Sensor) eine Temperaturdifferenz auftritt. In diesem Fall verfälscht die entstehende Thermospannung das Messergebnis. Weiterhin kann durch einen ungünstigen Innenaufbau des Widerstandsthermometers (z. B. unterschiedlicher Abstand der Verbindungsstellen vom Thermometerboden) oder durch eingeschlossene Feuchtigkeit unerwünschte Thermospannung auftreten. Die DIN EN 60 751 fordert einen Wert von $<20\,\mu$ V. Damit ergeben sich bei einem Messstrom von 1 mA für ein Widerstandsthermometer mit einem Nennwert von $100\,\Omega$ folgende mögliche Fehler:

Messtemperatur/°C	Messfehler in mK
0	50
100	50
200	50
500	60

Tabelle 27: Systematischer Fehler, verursacht durch Thermospannung

Auftretende Thermospannung kann durch zwei Messungen mit umgepoltem Messstrom festgestellt werden (Widerstandsmessung mit Digitalmultimeter). Je größer der Absolutwert der Differenz zwischen den beiden Anzeigewerten, umso höher ist die Thermospannung im Messkreis.

108 JUMO, FAS 146, Ausgabe 2007-01

Isolationswiderstand des Widerstandsthermometers (σM_{RI})

Zu niedrige Isolationswiderstände erzeugen einen Nebenschluss zum Temperatursensor (Parallelschaltung). Es kommt zu einer systematisch niedrigeren Temperaturanzeige. Bei gleichem Isolationswiderstand wächst der Messfehler mit zunehmendem Nennwert des Temperatursensors. Vom Hersteller wird der Isolationswiderstand nach DIN EN 60 751 überprüft (Mindestforderung 100 $M\Omega$).

Der Anwender muss das Eindringen von Feuchtigkeit in die Anschlussklemmen und die mechanische Beschädigung der Anschlussleitung verhindern.

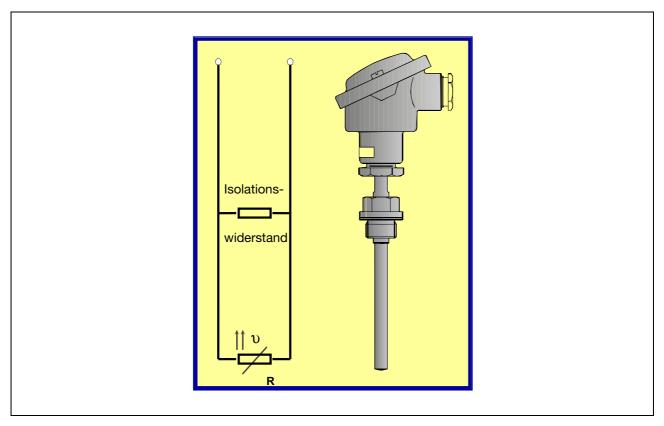


Abbildung 61: Ersatzschaltbild für den Isolationswiderstand im Inneren eines Widerstandsthermometers

Empfindlichkeit des Sensors (C_S, C_{S0})

Das Ausgangssignal des Temperatursensors ist der Widerstand (Platinsensor). Eine Änderung des Ausgangssignales führt entsprechend der Kennlinie (Anstieg) zu einer Änderung der Temperaturanzeige. Dieser Anstieg ergibt sich aus:

t/R (Widerstandsthermometer) $\cong \Delta t/\Delta R$ für kleine Änderungen

Als Näherung werden die Empfindlichkeiten der Normkennlinien DIN EN 60 751 verwendet.

Beispiele:

Für ein Widerstandsthermometer Pt 100 ergibt sich bei einer Messtemperatur von 100°C:

 $R (100 \,^{\circ}C) = 138,5055 \Omega$ $R (101 \,^{\circ}C) = 138,8847 \Omega$

 \rightarrow $\Delta t = 1$ °C und $\Delta R = 0.3792 \Omega \rightarrow C_S = 2.637$ °C/ Ω

Leitungswiderstand von Widerstandsthermometern (σR_{AI})

Der Einfluss des Leitungswiderstandes ist von dem Anschluss des Widerstandsthermometers abhängig.

JUMO, FAS 146, Ausgabe 2007-01 109

10 Die Messunsicherheit

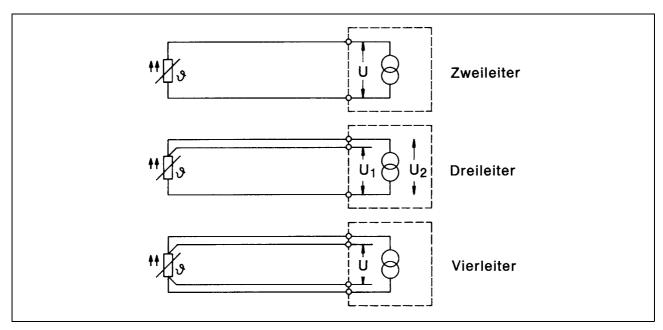


Abbildung 62: Verschiedene Anschlussarten

Zweileiterschaltung

Die Verbindung zwischen Widerstandsthermometer und Auswerteelektronik wird durch eine zweiadrige Anschlussleitung realisiert. Durch die Auswerteelektronik wird der Gesamtwiderstand, bestehend aus Temperatursensor, Innenleitung des Temperaturfühlers (in Schutzrohr)und Anschlussleitung, gemessen, dies führt zu einer systematisch höheren Anzeige. Vom gemessenen Widerstand wird deshalb die Summe aus Innen- und Anschlussleitung abgezogen. Diese Widerstände
schwanken jedoch fertigungsabhängig und sind zum Teil der Betriebstemperatur ausgesetzt, sodass weitere Unsicherheiten auftreten. Der Anwender hat insbesondere darauf zu achten, dass die
Anschlussleitung nicht auf Wärmequellen aufliegt, da dies zu einer Erhöhung des Zuleitungswiderstandes führt. Die Schwankung des Zuleitungswiderstandes wird auf $20m\Omega$ pro m abgeschätzt.

Dreileiterschaltung

Um die Einflüsse der Leitungswiderstände und deren temperaturabhängige Schwankungen zu minimieren, wird meist die Dreileiterschaltung verwendet. Hierbei wird eine zusätzliche Leitung zu einem Kontakt des Widerstandsthermometers geführt. Es bilden sich somit zwei Messkreise, von denen einer als Referenz genutzt wird. Durch die Dreileiterschaltung lässt sich der Leitungswiderstand sowohl in seinem Betrag als auch in seiner Temperaturabhängigkeit kompensieren. Voraussetzungen sind bei allen drei Adern identische Eigenschaften (Widerstand) und gleiche Temperaturen, denen sie ausgesetzt sind.

Vierleiterschaltung

Über zwei Zuleitungen wird das Thermometer mit dem Messstrom gespeist. Der Spannungsabfall am Messwiderstand wird über die Messleitungen abgegriffen. Liegt der Eingangswiderstand der nachgeschalteten Elektronik um ein Vielfaches höher als der Leitungswiderstand, ist dieser zu vernachlässigen.

Bei Temperaturmessketten mit Widerstandsthermometern in Vierleiterschaltung entfällt also der Messunsicherheitsanteil für den Leitungswiderstand.

Es ist jedoch zu beachten, dass die Schaltung nicht immer bis zum Messwiderstand geführt ist, sondern häufig nur bis zum Anschlusskopf des Thermometers, die Innenleitung ist dann in Zweileiter-Technik ausgeführt. dadurch ergeben sich, wenn auch in wesentlich geringerem Ausmaß, die bei der Zweileiter-Technik geschilderten Probleme.

JUMO, FAS 146, Ausgabe 2007-01

Spannungsversorgung der Auswerteelektronik (σ V)

In den Datenblättern der Messumformer und direktanzeigenden elektronischen Thermometer ist meist ein Nominalwert der Versorgungsspannung und ein prozentualer Fehler des Ausgangssignales bezogen auf die Abweichung vom Nominalwert angegeben.

Umgebungstemperatur der Auswerteelektronik (σt_M)

In den Datenblättern ist eine Betriebstemperatur angegeben. Auch hier ist wiederum ein prozentualer Fehler des Ausgangssignales, bezogen auf die Abweichung zur Betriebstemperatur angegeben.

Verarbeitungs- und Linearisierungsfehler (σt_W)

Die Zuordnung der Werte des Messsignales zur Temperatur erfolgt meist mit Hilfe gespeicherter Messwerttabellen. Die Stützstellenanzahl der Tabelle ist auf Grund des vorhandenen Speicherplatzes begrenzt. Daher tritt bei Messwerten zwischen den Stützstellen der Tabelle ein Linearisierungsfehler auf, da sowohl die Kennlinien der Widerstandsthermometer als auch der Thermoelemente nur durch Gleichungen höherer Ordnung exakt wieder gegeben werden können. Bei Thermoelementen ist dieser Messunsicherheitsanteil größer, da die Gleichungen mindestens 9. Ordnung sind und zumeist mit derselben Stützstellenanzahl ein größerer Temperaturbereich abgedeckt werden muss (Anwendungsbereich).

Es gibt bei einigen Anzeigegeräten die Möglichkeit, die Kennlinienparameter einzugeben. Die Temperatur wird dann entsprechend berechnet, dabei kommt es auf Grund der hohen Ordnung der Kennlinien zu Rundungsfehlern.

Weiterhin ist die Auflösung der Auswerteelektronik begrenzt. So beträgt bei jedem digitalen Anzeigegerät der "Grundfehler" ±1 Digit.

Eingangswiderstand der Auswerteelektronik (σ_B)

Der Bürdeneinfluss ist bei Messumformern unbedingt einzurechnen.

Das Ausgangssignal des Messumformers wird letztendlich zur einer Auswerteelektronik geführt, deren Eingangswiderstand begrenzt ist (im Datenblatt als maximale Bürde angegeben), da der Messumformer ansonsten kein stabiles Ausgangssignal liefern kann.

Der Bürdeneinfluss wird zumeist als prozentualer Fehler des Ausgangssignales angegeben.

Weitere Fehlerquellen

Die folgenden Fehler können sehr komplexe Ursachen haben und wurden in der obigen Modellgleichung nicht aufgeführt. Eine detaillierte Darstellung würde den Rahmen dieser Abhandlung sprengen, deshalb sei an dieser Stelle auf entsprechende Fachliteratur verwiesen. Im folgendem erfolgt nur eine kurze Auflistung und Erläuterung, um auf mögliche Probleme hinzuweisen.

Montageort der Auswerteelektronik

Der Montageort sollte möglichst erschütterungsfrei sein. Der Einbau im Bereich von elektromagnetischen Feldern (Motoren, Transformatoren usw.) ist zu vermeiden. Grundsätzlich ist bei der Montage die Betriebsanleitung zu beachten.

Mechanische Belastung von Widerstandsthermometern

Das Ausmaß der Widerstandsänderung durch Druck und Vibration hängt sehr stark von der Konstruktion des Temperaturfühlers und der verwendeten Bauart der Sensoren ab. Der Einbau der Temperatursensoren muss so ausgelegt werden, dass keine Relativbewegung innerhalb des Einbauortes und keine starke Beschleunigung entsteht.

Bei zu erwartenden hohen mechanischen oder chemischen Belastungen sollte in jedem Fall der Hersteller zwecks eines Beratungsgespräches konsultiert werden.

Langzeitverhalten von Widerstandsthermometern

Die Genauigkeit eines Sensors über seine gesamte Einsatzdauer wird in starkem Maße von den Einsatzbedingungen (Temperatur- und Temperaturwechselbelastung), der Reinheit der verwendeten Materialien und seinen konstruktiven Merkmalen bestimmt.

10 Die Messunsicherheit

Entscheidende Konstruktive Merkmale sind z. B.:

- Temperaturausdehnungskoeffizienten der verwendeten Materialien,
- mechanische Kopplung der temperaturempfindlichen Wicklung bzw. Schicht zur Umgebung,
- chemische Verträglichkeit der verwendeten Materialien (bei Einsatz bei höheren Temperaturen).

Driften werden vor allem durch die Entstehung von mechanischen Spannungen bei Temperaturbelastungen hervorgerufen.

Bei Neuentwicklungen von Sensoren werden Typprüfungen durchgeführt, dabei werden die Temperatursensoren Temperaturwechselbelastungen zwischen unterer und oberer Anwendungstemperatur ausgesetzt. Zur Beurteilung der Stabilität wird stets der Messwert am Eispunkt des Wassers herangezogen.

Beispielrechnungen

Für die einzelnen Messunsicherheitsanteile ergibt sich je nach angenommener Verteilung ein Teiler, da die Angaben in den Kalibrierscheinen und Datenblättern für K = 2 ausgelegt sind (Messwert mit 95 %-iger Wahrscheinlichkeit innerhalb des angegebenen Bereiches).

Der Teiler ist bei angenommener **Gauß**'scher Normalverteilung 2; bei Rechteckverteilung $\sqrt{3}$. Aus der Standardmessunsicherheit (Schätzwert) ergeben sich die einzelnen Unsicherheitsbeiträge. Der angegebene Sensivitätskoeffizient dient der Umrechnung der jeweiligen Standardmessunsicherheit in den Unsicherheitsbeitrag für das Ausgangssignal. Aus den einzelnen Unsicherheitsanteilen erhält man durch quadratische Addition die Gesamtmessunsicherheit für K = 1 (68,3% Auftretungswahrscheinlichkeit).

Messumformer mit Widerstandsthermometer

Es ist die Gesamtmessunsicherheit eines programmierbaren Messumformers JUMO dTRANS T02 mit einem Widerstandsthermometer Pt 100 (Toleranzklasse DIN B) bei $T=100\,^{\circ}$ C zu ermitteln. Der Messumformer arbeitet mit einem Stromausgangssignal 4 bis 20 mA und einem Temperaturbereich 0 ... 200 $^{\circ}$ C.

Das Widerstandsthermometer ist ein Kabelfühler Außendurchmesser 6mm in Zweileiterschaltung mit einer Einbaulänge von 30mm und einer Anschlussleitung mit 3m Länge.

Formel 42: Modellgleichung zur Berechnung der Gesamtmessunsicherheit:

$$I_X = t_m + \sigma M_F + \sigma M_D + \sigma M_A + \sigma M_E + \sigma M_{Th} + \sigma M_{RI} + \sigma R_{AL} + \sigma V + \sigma t_M + \sigma t_W + \sigma_B$$

Es wird angenommen, dass die Temperatur an der Messstelle 100,50°C beträgt.

Der Messumformer liefert ein Ausgangssignal von 12,040 mA.

Für σM_A , σV , σt_M , σ_B werden dieselben Annahmen wie im obigen Beispiel angenommen.

Wärmeableitfehler des Fühlers (σM_F)

Für den Wärmeableitfehler des Fühlers (Differenz zwischen Nenneinbaulänge und voll abgetauchten Zustand) wurden 60mK ermittelt.

Eigenerwärmungsfehler (σM_F)

Der Messumformer arbeitet mit einem Messstrom von 0,6mA. Damit ergibt sich eine Verlustleistung von ca.0,05m Ω . Der Eigenerwärmungsfehler ist somit vernachlässigbar.

Thermospannung(σM_{Th})

Bei einer möglichen Thermospannung von 20mV (Begrenzung nach DIN EN 60 751, siehe oben) und einem Messstrom von 0,6mA ergibt sich bei der Messtemperatur von 100°C (R ca. 138 Ω) ein möglicher Fehler von 33m Ω .

Isolationswiderstand (σM_{RI})

Bei einem vom Hersteller zu garantierenden Isolationswiderstand ≥100 MΩ (DIN) kann dieser Anteil beim Pt 100 vernachlässigt werden.

Schwankungen des Leitungswiderstandes (σR_{AL})

Auf Grund der Leitungslänge von 3m ist bei dem üblichen Leiterquerschnitt $2 \cdot (0,22 \, \text{mm})^2$ auf Grund der Herstellungstoleranzen mit Schwankungen des Leitungswiderstandes von $20 \, \text{m}\Omega$ zu rechnen. Zusätzlich ist darauf zu achten, dass die Anschlussleitung nicht unnötig erwärmt wird.

Abweichung des Widerstandsthermometers zur DIN EN 60751 (σM_D)

Die Grenzabweichung für die Toleranzklasse DIN B beträgt 0,3 + 0,005 · t, für eine Messtemperatur von 100°C erhält man eine Grenzabweichung von 0,8°C.

Linearisierungs- und Verarbeitungsfehler (σt_W)

Die Genauigkeit beträgt gemäß Datenblatt 0,4°C.

Man erhält eine der Messtemperatur beigeordnete Messunsicherheit von 0,46°C, für K = 2 ergeben sich 0,92°C.

Größe X _i	Verteilung	Standardmessunsicherheit u (Schätzwert)	Sensitivitäts- koeffizient C _i	Unsicherheits- beitrag u _i (y)
σM_D	Normal	0,8°C/2 = 0,4°C	1,0	0,4°C
σM_F	Rechteck	0,06°C/√ 3 = 0,035°C	1,0	0,035°C
σM_{Th}	Rechteck	$33 \text{m}\Omega/\sqrt{3} = 19 \text{m}\Omega$	2,637°C/Ω	0,05°C
σM_{AL}	Normal	$20 \text{m}\Omega/2 = 10 \text{m}\Omega$	2,637°C/Ω	0,026°C
σV	Rechteck	$0.004 \text{mA/}\sqrt{3} = 0.0023 \text{mA}$	12,5°C/mA	0,029°C
σt_{M}	Rechteck	$0.008 \mathrm{mA/\sqrt{3}} = 0.0046 \mathrm{mA}$	12,5°C/mA	0,058°C
σt_W	Normal	0,4°C/2 = 0,2°C	1,0	0,2°C
σ_{B}	Rechteck	0,008mA/√ 3 = 0,0046Ma	12,5°C/Ma	0,058°C
I _X	100,50°C			0,46°C

Tabelle 28: Gesamtmessunsicherheit

113

10 Die Messunsicherheit

Übersicht Stahlsorten und ihre verschiedenen Bezeichnungen

							•		•	
Werk- stoff- Nr.	Kurzname nach EN 10 088-2	DIN/ SEW	АSTM- Туре	UNS	NF	SIS	BS	CSN	JIS	GOST
1.4301	1.4301 X 5 CrNi 18-10	17440/41	304	S 30400	Z 7 CN 18-09	2332/33	304 S 31 17240		SUS 304	08 Ch 18 N 10
1.4303	1.4303 X 4 CrNi 18-12	17440	(302)	(8 30500)	(S 30500) Z 8 CN 18-12		305 S 19		SUS 305	06 Ch 18 N 11
1.4306	1.4306 X 2 CrNi 19-11	17440/41	304 L	S 30403	Z 3 CN 18-10	2352	304 S 11 17249	17249	SUS 304 L	03 Ch 18 N 11
1.4307	1.4307 X 2 CrNi 18- 9		304 L	S 30403						
1.4318	1.4318 X 2 CrNiN 18-7		301 LN		Z 3 CN 18- 07AZ				SUS 301 LN	
1.4401	1.4401 X 5 CrNiMo 17-12-2	17440/41	316	S 31600	Z 7 CND17-11-02 2347		316 S 31 17346		SUS 316	03 Ch 17 N13 M 2
1.4404	1.4404 X 2 CrNiMo 17-12-2	17440/41	316 L	S 31603	Z 3 CND17-12-02 2348		316 S 11 17349	17349	SUS 316 L	03 Ch 17 N13 M 2
1.4435	1.4435 X 2 CrNiMo 18-14-3	17440/41	316 L	S 31603	Z 3 CND17-13-03	2353	316 S 13		SUS 316 L	03 Ch 17 N14 M 2
1.4436	1.4436 X 3 CrNiMo 17-13-3	17440/41	316	S 31600	Z 6 CND18-12-03	2343	316 S 33 17352	17352	SUS 316	
1.4541	1.4541 X 6 CrNiTi 18-10	17440/41	321	S 32100	Z 6 CNT 18-10	2337	321 S 31 17247		SUS 321	08 Ch 18 N 10 T
1.4561	1.4561 X 1 CrNiMoTi 18-13-2	SEW 400	316 L	S 31603						
1.4571	1.4571 X 6 CrNiMoTi 17-12-2	17440/41	316 Ti	S 31635	Z 6 CNDT 17-12	2350	320 S 31 17848		SUS 316 Ti	10 Ch 17 N13 M 2 T
							•			

11.2 Formeln zur Temperaturumrechnung

In Celsius

Formel 43:

$$t_{Celsius} = t_{Kelvin} - 273,15$$

Formel 44:

$$t_{\text{Celsius}} = (t_{\text{Fahrenheit}} - 32) \cdot 5/9$$

Formel 45:

$$t_{Celsius} = t_{R\acute{e}aumur} \cdot 5/4$$

In Kelvin

Formel 46:

$$t_{Kelvin} = t_{Celsius} + 273, 15$$

Formel 47:

$$t_{Kelvin} = (t_{Fahrenheit} - 32) \cdot 5/9 + 273,15$$

Formel 48:

$$t_{Kelvin} = t_{Réaumur} \cdot 5/4 + 273,15$$

In Fahrenheit

Formel 49:

$$t_{Fahrenheit} = 9/5 \cdot t_{Celsius} + 32$$

Formel 50:

$$t_{Fahrenheit} = (t_{Kelvin} - 273,15) \cdot 9/5 + 32$$

Formel 51:

$$t_{Fahrenheit} = tR \cdot 9/4 + 32$$

In Réaumur

Formel 52:

$$t_{Réaumur} = 4/5 \times t_{Celsius}$$

Formel 53:

$$t_{Réaumur} = (t_{Kelvin} - 273,15) \cdot 4/5$$

Formel 54:

$$t_{Réaumur} = (t_{Fahrenheit} - 32) \cdot 4/9$$

11.3	Spannungsreihe der Therm	oelemente	
11.3.1	Eisen-Konstantan (Fe-CuNi)	"J"	Seite 119
11.3.2	Kupfer-Konstantan (Cu-CuNi)	"U"	Seite 122
11.3.3	Kupfer-Konstantan (Cu-CuNi)	"T"	Seite 123
11.3.4	Eisen-Konstantan (Fe-CuNi)	"L"	Seite 124
11.3.5	Nickel-Chrom-Nickel (NiCr-Ni)	"K"	Seite 125
11.3.6	Nickel-Chrom-Konstantan(NiCr-CuN	i)"E"	Seite 130
11.3.7	Nicrosil-Nisil (NiCrSi-NiSi)	"N"	Seite 132
11.3.8	PlatinRhodium-Platin(Pt10Rh-Pt)	"S"	Seite 136
11.3.9	PlatinRhodium-Platin(Pt13Rh-Pt)	"R"	Seite 141
11.3.10	PlatinRhodium-Platin(Pt30Rh-Pt6Rh)	"B"	Seite 146
11.4	Grundwerte für den Pt 100		Seite 151
11.5	Grundwerte für den Ni 100		Seite 154

11.3.1 Eisen-Konstantan (Fe-CuNi) "J"

-	0	1	2	3	4	5	6	7	8	9	10
-210	-8,095	-8,076	-8,057	-8,037	-8,017	-7,996	-7,976	-7,955	-7,934	-7,912	-7,890
-200	-7,890	-7,868	-7,846	-7,824	-7,801	-7,778	-7,755	-7,731	-7,707	-7,683	-7,659
-190	-7,659	-7,634	-7,610	-7,585	-7,559	-7,534	-7,508	-7,482	-7,456	-7,429	-7,403
-180	-7,403	-7,376	-7,348	-7,321	-7,293	-7,265	-7,237	-7,209	-7,181	-7,152	-7,123
-170	-7,123	-7,094	-7,064	-7,035	-7,005	-6,975	-6,944	-6,914	-6,883	-6,853	-6,821
-160	-6,821	-6,790	-6,759	-6,727	-6,695	-6,663	-6,631	-6,598	-6,566	-6,533	-6,500
-150	-6,500	-6,467	-6,433	-6,400	-6,366	-6,332	-6,298	-6,263	-6,229	-6,194	-6,159
-140	-6,159	-6,124	-6,089	-6,054	-6,018	-5,982	-5,946	-5,910	-5,874	-5,838	-5,801
-130	-5,801	-5,764	-5,727	-5,690	-5,653	-5,616	-5,578	-5,541	-5,503	-5,465	-5,426
-120	-5,426	-5,388	-5,350	-5,311	-5,272	-5,233	-5,194	-5,155	-5,116	-5,076	-5,037
-110	-5,037	-4,997	-4,957	-4,917	-4,877	-4,836	-4,796	-4,755	-4,714	-4,674	-4,633
-100	-4,633	-4,591	-4,550	-4,509	-4,467	-4,425	-4,384	-4,342	-4,300	-4,257	-4,215
-90	-4,215	-4,173	-4,130	-4,088	-4,045	-4,002	-3,959	-3,916	-3,872	-3,829	-3,786
-80	-3,786	-3,742	-3,698	-3,654	-3,610	-3,566	-3,522	-3,478	-3,434	-3,389	-3,344
-70	-3,344	-3,300	-3,255	-3,210	-3,165	-3,120	-3,075	-3,029	-2,984	-2,938	-2,893
-60	-2,893	-2,847	-2,801	-2,755	-2,709	-2,663	-2,617	-2,571	-2,524	-2,478	-2,431
-50	-2,431	-2,385	-2,338	-2,291	-2,244	-2,197	-2,150	-2,103	-2,055	-2,008	-1,961
-40	-1,961	-1,913	-1,865	-1,818	-1,770	-1,722	-1,674	-1,626	-1,578	-1,530	-1,482
-30	-1,482	-1,433	-1,385	-1,336	-1,288	-1,239	-1,190	-1,142	-1,093	-1,044	-0,995
-20	-0,995	-0,946	-0,896	-0,847	-0,798	-0,749	-0,699	-0,650	-0,600	-0,550	-0,501
-10	-0,501	-0,451	-0,401	-0,351	-0,301	-0,251	-0,201	-0,151	-0,101	-0,050	0,000
0	0,000	0,050	0,101	0,151	0,202	0,253	0,303	0,354	0,405	0,456	0,507
10	0,507	0,558	0,609	0,660	0,711	0,762	0,814	0,865	0,916	0,968	1,019
20	1,019	1,071	1,122	1,174	1,226	1,277	1,329	1,381	1,433	1,485	1,537
30	1,537	1,589	1,641	1,693	1,745	1,797	1,849	1,902	1,954	2,006	2,059
40	2,059	2,111	2,164	2,216	2,269	2,322	2,374	2,427	2,480	2,532	2,585
50	2,585	2,638	2,691	2,744	2,797	2,850	2,903	2,956	3,009	3,062	3,116
60	3,116	-	3,222	3,275		3,382	3,436	3,489	3,543	3,596	3,650
70	3,650	3,703	3,757	3,810		3,918	3,971	4,025	4,079	4,133	4,187
80	4,187	4,240	4,294	4,348		4,456	4,510	4,564	4,618	4,672	4,726
90	4,726	4,781	4,835	4,889		4,997	5,052	5,106	5,160	5,215	5,269
100	5,269	5,323	5,378	5,432		5,541	5,595	5,650	5,705	5,759	5,814
110	5,814	5,868	5,923	5,977	6,032	6,087	6,141	6,196	6,251	6,306	6,360
120	6,360	6,415	6,470	6,525		6,634	6,689	6,744	6,799	6,854	6,909
130	6,909	6,964	7,019	7,074		7,184	7,239	7,294	7,349	7,404	7,459
140	7,459	7,514	7,569	7,624		7,734	7,789	7,844	7,900	7,955	8,010
150	8,010	8,065	8,120	8,175		8,286	8,341	8,396	8,452	8,507	8,562
160	8,562	8,618	8,673	8,728		8,839	8,894	8,949	9,005	9,060	9,115
170	9,115	9,171	9,226	9,282	9,337	9,392	9,448	9,503	9,559	9,614	9,669

Eisen-Konstantan (Fe-CuNi) "J"

`	0	1	2	3	4	5	6	7	8	9	10
180	9,669	9,725	9,780	9,836	9,891	9,947	10,002	10,057	10,113	10,168	10,224
190	10,224	10,279	10,335	10,390	10,446	10,501	10,557	10,612	10,668	10,723	10,779
200	10,779	10,834	10,890	10,945	11,001	11,056	11,112	11,167	11,223	11,278	11,334
210	11,334	11,389	11,445	11,501	11,556	11,612	11,667	11,723	11,778	11,834	11,889
220	11,889	11,945	12,000	12,056	12,111	12,167	12,222	12,278	12,334	12,389	12,445
230	12,445	12,500	12,556	12,611	12,667	12,722	12,778	12,833	12,889	12,944	13,000
240	13,000	13,056	13,111	13,167	13,222	13,278	13,333	13,389	13,444	13,500	13,555
250	13,555	13,611	13,666	13,722	13,777	13,833	13,888	13,944	13,999	14,055	14,110
260	14,110	14,166	14,221	14,277	14,332	14,388	14,443	14,499	14,554	14,609	14,665
270	14,665	14,720	14,776	14,831	14,887	14,942	14,998	15,053	15,109	15,164	15,219
280	15,219	15,275	15,330	15,386	15,441	15,496	15,552	15,607	15,663	15,718	15,773
290	15,773	15,829	15,884	15,940	15,995	16,050	16,106	16,161	16,216	16,272	16,327
300	16,327	16,383	16,438	16,493	16,549	16,604	16,659	16,715	16,770	16,825	16,881
310	16,881	16,936	16,991	17,046	17,102	17,157	17,212	17,268	17,323	17,378	17,434
320	17,434	17,489	17,544	17,599	17,655	17,710	17,765	17,820	17,876	17,931	17,986
330	17,986	18,041	18,097	18,152	18,207	18,262	18,318	18,373	18,428	18,483	18,538
340	18,538	18,594	18,649	18,704	18,759	18,814	18,870	18,925	18,980	19,035	19,090
350	19,090	19,146	19,201	19,256	19,311	19,366	19,422	19,477	19,532	19,587	19,642
360	19,642	19,697	19,753	19,808	19,863	19,918	19,973	20,028	20,083	20,139	20,194
370	20,194	20,249	20,304	20,359	20,414	20,469	20,525	20,580	20,635	20,690	20,745
380	20,745	20,800	20,855	20,911	20,966	21,021	21,076	21,131	21,186	21,241	21,297
390	21,297	21,352	21,407	21,462	21,517	21,572	21,627	21,683	21,738	21,793	21,848
400	21,848	21,903	21,958	22,014	22,069	22,124	22,179	22,234	22,289	22,345	22,400
410	22,400	22,455	22,510	22,565	22,620	22,676	22,731	22,786	22,841	22,896	22,952
420	22,952	23,007	23,062	23,117	23,172	23,228	23,283	23,338	23,393	23,449	23,504
430	23,504	23,559	23,614	23,670	23,725	23,780	23,835	23,891	23,946	24,001	24,057
440	24,057	24,112	24,167	24,223	24,278	24,333	24,389	24,444	24,499	24,555	24,610
450	24,610	24,665	24,721	24,776	24,832	24,887	24,943	24,998	25,053	25,109	25,164
460	25,164	25,220	25,275	25,331	25,386	25,442	25,497	25,553	25,608	25,664	25,720
470	25,720	25,775	25,831	25,886	25,942	25,998	26,053	26,109	26,165	26,220	26,276
480	26,276	26,332	26,387	26,443	26,499	26,555	26,610	26,666	26,722	26,778	26,834
490	26,834	26,889	26,945	27,001	27,057	27,113	27,169	27,225	27,281	27,337	27,393
500	27,393	27,449	27,505	27,561	27,617	27,673	27,729	27,785	27,841	27,897	27,953
510	27,953	28,010	28,066	28,122	28,178	28,234	28,291	28,347	28,403	28,460	28,516
520	28,516	28,572	28,629	28,685	28,741	28,798	28,854	28,911	28,967	29,024	29,080
530	29,080	29,137	29,194	29,250	29,307	29,363	29,420	29,477	29,534	29,590	29,647
540	29,647	29,704	29,761	29,818	29,874	29,931	29,988	30,045	30,102	30,159	30,216
550	30,216	30,273	30,330	30,387	30,444	30,502	30,559	30,616	30,673	30,730	30,788
560	30,788	30,845	30,902	30,960	31,017	31,074	31,132	31,189	31,247	31,304	31,362

Eisen-Konstantan (Fe-CuNi) "J"

,	0	1	2	3	4	5	6	7	8	9	10
570	31,362	31,419	31,477	31,535	31,592	31,650	31,708	31,766	31,823	31,881	31,939
580	31,939	31,997	32,055	32,113	32,171	32,229	32,287	32,345	32,403	32,461	32,519
590	32,519	32,577	32,636	32,694	32,752	32,810	32,869	32,927	32,985	33,044	33,102
600	33,102	33,161	33,219	33,278	33,337	33,395	33,454	33,513	33,571	33,630	33,689
610	33,689	33,748	33,807	33,866	33,925	33,984	34,043	34,102	34,161	34,220	34,279
620	34,279	34,338	34,397	34,457	34,516	34,575	34,635	34,694	34,754	34,813	34,873
630	34,873	34,932	34,992	35,051	35,111	35,171	35,230	35,290	35,350	35,410	35,470
640	35,470	35,530	35,590	35,650	35,710	35,770	35,830	35,890	35,950	36,010	36,071
650	36,071	36,131	36,191	36,252	36,312	36,373	36,433	36,494	36,554	36,615	36,675
660	36,675	36,736	36,797	36,858	36,918	36,979	37,040	37,101	37,162	37,223	37,284
670	37,284	37,345	37,406	37,467	37,528	37,590	37,651	37,712	37,773	37,835	37,896
680	37,896	37,958	38,019	38,081	38,142	38,204	38,265	38,327	38,389	38,450	38,512
690	38,512	38,574	38,636	38,698	38,760	38,822	38,884	38,946	39,008	39,070	39,132
700	39,132	39,194	39,256	39,318	39,381	39,443	39,505	39,568	39,630	39,693	39,755
710	39,755	39,818	39,880	39,943	40,005	40,068	40,131	40,193	40,256	40,319	40,382
720	40,382	40,445	40,508	40,570	40,633	40,696	40,759	40,822	40,886	40,949	41,012
730	41,012	41,075	41,138	41,201	41,265	41,328	41,391	41,455	41,518	41,581	41,645
740	41,645	41,708	41,772	41,835	41,899	41,962	42,026	42,090	42,153	42,217	42,281
750	42,281	42,344	42,408	42,472	42,536	42,599	42,663	42,727	42,791	42,855	42,919
760	42,919	42,983	43,047	43,111	43,175	43,239	43,303	43,367	43,431	43,495	43,559
770	43,559	43,624	43,688	43,752	43,817	43,881	43,945	44,010	44,074	44,139	44,203
780	44,203	44,267	44,332	44,396	44,461	44,525	44,590	44,655	44,719	44,784	44,848
790	44,848	44,913	44,977	45,042	45,107	45,171	45,236	45,301	45,365	45,430	45,494
800	45,494	45,559	45,624	45,688	45,753	45,818	45,882	45,947	46,011	46,076	46,141
810	46,141	46,205	46,270	46,334	46,399	46,464	46,528	46,593	46,657	46,722	46,786
820	46,786	46,851	46,915	46,980	47,044	47,109	47,173	47,238	47,302	47,367	47,431
830	47,431	47,495	47,560	47,624	47,688	47,753	47,817	47,881	47,946	48,010	48,074
840	48,074	48,138	48,202	48,267	48,331	48,395	48,459	48,523	48,587	48,651	48,715
850	48,715	48,779	48,843	48,907	48,971	49,034	49,098	49,162	49,226	49,290	49,353
860	49,353	49,417	49,481	49,544	49,608	49,672	49,735	49,799	49,862	49,926	49,989
870	49,989	50,052	50,116	50,179	50,243	50,306	50,369	50,432	50,495	50,559	50,622
880	50,622	50,685	50,748	50,811	50,874	50,937	51,000	51,063	51,126	51,188	51,251
890	51,251	51,314	51,377	51,439	51,502	51,565	51,627	51,690	51,752	51,815	51,877
900	51,877	51,940	52,002	52,064	52,127	52,189	52,251	52,314	52,376	52,438	52,500
910	52,500	52,562	52,624	52,686	52,748	52,810	52,872	52,934	52,996	53,057	53,119
920	53,119	53,181	53,243	53,304	53,366	53,427	53,489	53,550	53,612	53,673	53,735
930	53,735	53,796	53,857	53,919	53,980	54,041	54,102	54,164	54,225	54,286	54,347
940	54,347	54,408	54,469	54,530	54,591	54,652	54,713	54,773	54,834	54,895	54,956
950	54,956	55,016	55,077	55,138	55,198	55,259	55,319	55,380	55,440	55,501	55,561

Eisen-Konstantan (Fe-CuNi) "J"

(Thermospannung in mV, bezogen auf eine Vergleichsstellentemperatur von 0°C)

	0	1	2	3	4	5	6	7	8	9	10
960	55,561	55,622	55,682	55,742	55,803	55,863	55,923	55,983	56,043	56,104	56,164
970	56,164	56,224	56,284	56,344	56,404	56,464	56,524	56,584	56,643	56,703	56,763
980	56,763	56,823	56,883	56,942	57,002	57,062	57,121	57,181	57,240	57,300	57,360
990	57,360	57,419	57,479	57,538	57,597	57,657	57,716	57,776	57,835	57,894	57,953
1000	57,953	58,013	58,072	58,131	58,190	58,249	58,309	58,368	58,427	58,486	58,545
1010	58,545	58,604	58,663	58,722	58,781	58,840	58,899	58,957	59,016	59,075	59,134
1020	59,134	59,193	59,252	59,310	59,369	59,428	59,487	59,545	59,604	59,663	59,721
1030	59,721	59,780	59,838	59,897	59,956	60,014	60,073	60,131	60,190	60,248	60,307
1040	60,307	60,365	60,423	60,482	60,540	60,599	60,657	60,715	60,774	60,832	60,890
1050	60,890	60,949	61,007	61,065	61,123	61,182	61,240	61,298	61,356	61,415	61,473
1060	61,473	61,531	61,589	61,647	61,705	61,763	61,822	61,880	61,938	61,996	62,054
1070	62,054	62,112	62,170	62,228	62,286	62,344	62,402	62,460	62,518	62,576	62,634
1080	62,634	62,692	62,750	62,808	62,866	62,924	62,982	63,040	63,098	63,156	63,214
1090	63,214	63,271	63,329	63,387	63,445	63,503	63,561	63,619	63,677	63,734	63,792
1100	63,792	63,850	63,908	63,966	64,024	64,081	64,139	64,197	64,255	64,313	64,370
1110	64,370	64,428	64,486	64,544	64,602	64,659	64,717	64,775	64,833	64,890	64,948
1120	64,948	65,006	65,064	65,121	65,179	65,237	65,295	65,352	65,410	65,468	65,525
1130	65,525	65,583	65,641	65,699	65,756	65,814	65,872	65,929	65,987	66,045	66,102
1140	66,102	66,160	66,218	66,275	66,333	66,391	66,448	66,506	66,564	66,621	66,679
1150	66,679	66,737	66,794	66,852	66,910	66,967	67,025	67,082	67,140	67,198	67,255
1160	67,255	67,313	67,370	67,428	67,486	67,543	67,601	67,658	67,716	67,773	67,831
1170	67,831	67,888	67,946	68,003	68,061	68,119	68,176	68,234	68,291	68,348	68,406
1180	68,406	68,463	68,521	68,578	68,636	68,693	68,751	68,808	68,865	68,923	68,980
1190	68,980	69,037	69,095	69,152	69,209	69,267	69,324	69,381	69,439	69,496	69,553

11.3.2 Kupfer-Konstantan (Cu-CuNi) "U"

°C	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
-200	-5,70	-	-	1	1	-	-	-	-	-
-100	-3,40	-3,68	-3,95	-4,21	-4,46	-4,69	-4,91	-5,12	-5,32	-5,51
0	0	-0,39	-0,77	-1,14	-1,50	-1,85	-2,18	-2,50	-2,81	-3,11
°C	0	10	20	30	40	50	60	70	80	90
0	0	0,40	0,80	1,21	1,63	2,05	2,48	2,91	3,35	3,80
100	4,25	4,71	5,18	5,65	6,13	6,62	7,12	7,63	8,15	8,67
200	9,20	9,74	10,29	10,85	11,41	11,98	12,55	13,13	13,71	14,30
300	14,90	15,50	16,10	16,70	17,31	17,92	18,53	19,14	19,76	20,38
400	21,00	21,62	22,25	22,88	23,51	24,15	24,79	25,44	26,09	26,75
500	27,41	28,08	28,75	29,43	30,11	30,80	31,49	32,19	32,89	33,60

11.3.3 Kupfer-Konstantan (Cu-CuNi) "T"

	0	1	2	3	4	5	6	7	8	9	10
-270	-6,258	-6,256	-6,255	-6,253	-6,251	-6,248	-6,245	-6,242	-6,239	-6,236	-6,232
-260	-6,232	-6,228	-6,223	-6,219	-6,214	-6,209	-6,204	-6,198	-6,193	-6,187	-6,180
-250	-6,180	-6,174	-6,167	-6,160	-6,153	-6,146	-6,138	-6,130	-6,122	-6,114	-6,105
-240	-6,105	-6,096	-6,087	-6,078	-6,068	-6,059	-6,049	-6,038	-6,028	-6,017	-6,007
-230	-6,007	-5,996	-5,985	-5,973	-5,962	-5,950	-5,938	-5,926	-5,914	-5,901	-5,888
-220	-5,888	-5,876	-5,863	-5,850	-5,836	-5,823	-5,809	-5,795	-5,782	-5,767	-5,753
-210	-5,753	-5,739	-5,724	-5,710	-5,695	-5,680	-5,665	-5,650	-5,634	-5,619	-5,603
-200	-5,603	-5,587	-5,571	-5,555	-5,539	-5,523	-5,506	-5,489	-5,473	-5,456	-5,439
-190	-5,439	-5,421	-5,404	-5,387	-5,369	-5,351	-5,334	-5,316	-5,297	-5,279	-5,261
-180	-5,261	-5,242	-5,224	-5,205	-5,186	-5,167	-5,148	-5,128	-5,109	-5,089	-5,070
-170	-5,070	-5,050	-5,030	-5,010	-4,989	-4,969	-4,949	-4,928	-4,907	-4,886	-4,865
-160	-4,865	-4,844	-4,823	-4,802	-4,780	-4,759	-4,737	-4,715	-4,693	-4,671	-4,648
-150	-4,648	-4,626	-4,604	-4,581	-4,558	-4,535	-4,512	-4,489	-4,466	-4,443	-4,419
-140	-4,419	-4,395	-4,372	-4,348	-4,324	-4,300	-4,275	-4,251	-4,226	-4,202	-4,177
-130	-4,177	-4,152	-4,127	-4,102	-4,077	-4,052	-4,026	-4,000	-3,975	-3,949	-3,923
-120	-3,923	-3,897	-3,871	-3,844	-3,818	-3,791	-3,765	-3,738	-3,711	-3,684	-3,657
-110	-3,657	-3,629	-3,602	-3,574	-3,547	-3,519	-3,491	-3,463	-3,435	-3,407	-3,379
-100	-3,379	-3,350	-3,322	-3,293	-3,264	-3,235	-3,206	-3,177	-3,148	-3,118	-3,089
-90	-3,089	-3,059	-3,030	-3,000	-2,970	-2,940	-2,910	-2,879	-2,849	-2,818	-2,788
-80	-2,788	-2,757	-2,726	-2,695	-2,664	-2,633	-2,602	-2,571	-2,539	-2,507	-2,476
-70	-2,476	-2,444	-2,412	-2,380	-2,348	-2,316	-2,283	-2,251	-2,218	-2,186	-2,153
-60	-2,153	-2,120	-2,087	-2,054	-2,021	-1,987	-1,954	-1,920	-1,887	-1,853	-1,819
-50	-1,819	-1,785	-1,751	-1,717	-1,683	-1,648	-1,614	-1,579	-1,545	-1,510	-1,475
-40	-1,475	-1,440	-1,405	-1,370	-1,335	-1,299	-1,264	-1,228	-1,192	-1,157	-1,121
-30	-1,121	-1,085	-1,049	-1,013	-0,976	-0,940	-0,904	-0,867	-0,830	-0,794	-0,757
-20	-0,757	-0,720	-0,683	-0,646	-0,608	-0,571	-0,534	-0,496	-0,459	-0,421	-0,383
-10	-0,383	-0,345	-0,307	-0,269	-0,231	-0,193	-0,154	-0,116	-0,077	-0,039	0,000
0	0,000	0,039	0,078	0,117	0,156	0,195	0,234	0,273	0,312	0,352	0,432
10	0,432	0,431	0,470	0,510	0,549	0,589	0,629	0,669	0,709	0,749	0,833
20	0,833	0,830	0,870	0,911	0,951	0,992	1,033	1,074	1,114	1,155	1,238
30	1,238	1,238	1,279	1,320	1,362	1,403	1,445	1,486	1,528	1,570	1,647
40	1,647	1,654	1,696	1,738	1,780	1,823	1,865	1,908	1,950	1,993	2,058
50	2,058	2,079	2,122	2,165	2,208	2,251	2,294	2,338	2,381	2,425	2,472
60	2,472	2,512	2,556	2,600	2,643	2,687	2,732	2,776	2,820	2,864	2,886
70 80	2,886 3,302	2,953 3,403	2,998 3,448	3,043 3,494	3,087 3,539	3,132	3,177	3,222 3,677	3,267 3,722	3,312 3,768	3,302 3,717
90	3,717	3,860		3,953	3,999	3,585	3,631 4,092	· ·	· ·	4,232	
100	4,131	4,325	3,907 4,372	4,419	4,466	4,046 4,513	4,092	4,138 4,608	4,185 4,655	4,702	4,131 4,544
110	4,131	4,323	4,845	4,419	4,400	4,988	5,036	5,084	5,132	5,180	5,955
120	5,228	5,277	5,325	5,373	5,422	5,470	5,519	5,567	5,616	5,665	5,714
130	5,714	5,763	5,812	5,861	5,422	5,959	6,008	6,057	6,107	6,156	6,206
140	6,206	6,255	6,305	6,355	6,404	6,454	6,504	6,554	6,604	6,654	6,704
140	0,200	0,233	0,305	0,335	0,404	0,454	0,504	0,354	0,004	0,004	0,704

Kupfer-Konstantan (Cu-CuNi) "T"

(Thermospannung in mV, bezogen auf eine Vergleichsstellentemperatur von 0 $^{\circ}$ C)

	0	1	2	3	4	5	6	7	8	9	10
150	6,704	6,754	6,805	6,855	6,905	6,956	7,006	7,057	7,107	7,158	7,209
160	7,209	7,260	7,310	7,361	7,412	7,463	7,515	7,566	7,617	7,668	7,720
170	7,720	7,771	7,823	7,874	7,926	7,977	8,029	8,081	8,133	8,185	8,237
180	8,237	8,289	8,341	8,393	8,445	8,497	8,550	8,602	8,654	8,707	8,759
190	8,759	8,812	8,865	8,917	8,970	9,023	9,076	9,129	9,182	9,235	9,288
200	9,288	9,341	9,395	9,448	9,501	9,555	9,608	9,662	9,715	9,769	9,822
210	9,822	9,876	9,930	9,984	10,038	10,092	10,146	10,200	10,254	10,308	10,362
220	10,362	10,417	10,471	10,525	10,580	10,634	10,689	10,743	10,798	10,853	10,907
230	10,907	10,962	11,017	11,072	11,127	11,182	11,237	11,292	11,347	11,403	11,458
240	11,458	11,513	11,569	11,624	11,680	11,735	11,791	11,846	11,902	11,958	12,013
250	12,013	12,069	12,125	12,181	12,237	12,293	12,349	12,405	12,461	12,518	12,574
260	12,574	12,630	12,687	12,743	12,799	12,856	12,912	12,969	13,026	13,082	13,139
270	13,139	13,196	13,253	13,310	13,366	13,423	13,480	13,537	13,595	13,652	13,709
280	13,709	13,766	13,823	13,881	13,938	13,995	14,053	14,110	14,168	14,226	14,283
290	14,283	14,341	14,399	14,456	14,514	14,572	14,630	14,688	14,746	14,804	14,862
300	14,862	14,920	14,978	15,036	15,095	15,153	15,211	15,270	15,328	15,386	15,445
310	15,445	15,503	15,562	15,621	15,679	15,738	15,797	15,856	15,914	15,973	16,032
320	16,032	16,091	16,150	16,209	16,268	16,327	16,387	16,446	16,505	16,564	16,624
330	16,624	16,683	16,742	16,802	16,861	16,921	16,980	17,040	17,100	17,159	17,219
340	17,219	17,279	17,339	17,399	17,458	17,518	17,578	17,638	17,698	17,759	17,819
350	17,819	17,879	17,939	17,999	18,060	18,120	18,180	18,241	18,301	18,362	18,422
360	18,422	18,483	18,543	18,604	18,665	18,725	18,786	18,847	18,908	18,969	19,030
370	19,030	19,091	19,152	19,213	19,274	19,335	19,396	19,457	19,518	19,579	19,641
380	19,641	19,702	19,763	19,825	19,886	19,947	20,009	20,070	20,132	20,193	20,255
390	20,255	20,317	20,378	20,440	20,502	20,563	20,625	20,687	20,748	20,810	20,872

11.3.4 Eisen-Konstantan (Fe-CuNi) "L"

°C	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
-200	-8,15	-	-	-	-	-	-	-	-	-
-100	-4,75	-5,15	-5,53	-5,90	-6,26	-6,60	-6,93	-7,25	-7,56	-7,86
0	0	-0,51	-1,02	-1,53	-2,03	-2,51	-2,98	-3,44	-3,89	-4,33
°C	0	10	20	30	40	50	60	70	80	90
0	0	0,52	1,05	1,58	2,11	2,65	3,19	3,73	4,27	4,82
100	5,37	5,92	6,47	7,03	7,59	8,15	8,71	9,27	9,83	10,39
200	10,95	11,51	12,07	12,63	13,19	13,75	14,31	14,88	15,44	16,00
300	16,56	17,12	17,68	18,24	18,80	19,36	19,92	20,48	21,04	21,60
400	22,16	22,72	23,29	23,86	24,43	25,00	25,57	26,14	26,71	27,28
500	27,85	28,43	29,01	29,59	30,17	30,75	31,33	31,91	32,49	33,08
600	33,67	34,26	34,85	35,44	36,04	36,64	37,25	37,85	38,47	39,09
700	39,72	40,35	40,98	41,62	42,27	42,92	43,57	44,23	44,89	45,55
800	46,22	46,89	47,57	48,25	48,94	49,63	50,32	51,02	51,72	52,43

11.3.5 Nickel-Chrom-Nickel (NiCr-Ni) "K"

	0	1	2	3	4	5	6	7	8	9	10
-270	-6,458	-6,457	-6,456	-6,455	-6,453	-6,452	-6,450	-6,448	-6,446	-6,444	-6,441
-260	-6,441	-6,438	-6,435	-6,432	-6,429	-6,425	-6,421	-6,417	-6,413	-6,408	-6,404
-250	-6,404	-6,399	-6,393	-6,388	-6,382	-6,377	-6,370	-6,364	-6,358	-6,351	-6,344
-240	-6,344	-6,337	-6,329	-6,322	-6,314	-6,306	-6,297	-6,289	-6,280	-6,271	-6,262
-230	-6,262	-6,252	-6,243	-6,233	-6,223	-6,213	-6,202	-6,192	-6,181	-6,170	-6,158
-220	-6,158	-6,147	-6,135	-6,123	-6,111	-6,099	-6,087	-6,074	-6,061	-6,048	-6,035
-210	-6,035	-6,021	-6,007	-5,994	-5,980	-5,965	-5,951	-5,936	-5,922	-5,907	-5,891
-200	-5,891	-5,876	-5,861	-5,845	-5,829	-5,813	-5,797	-5,780	-5,763	-5,747	-5,730
-190	-5,730	-5,713	-5,695	-5,678	-5,660	-5,642	-5,624	-5,606	-5,588	-5,569	-5,550
-180	-5,550	-5,531	-5,512	-5,493	-5,474	-5,454	-5,435	-5,415	-5,395	-5,374	-5,354
-170	-5,354	-5,333	-5,313	-5,292	-5,271	-5,250	-5,228	-5,207	-5,185	-5,163	-5,141
-160	-5,141	-5,119	-5,097	-5,074	-5,052	-5,029	-5,006	-4,983	-4,960	-4,936	-4,913
-150	-4,913	-4,889	-4,865	-4,841	-4,817	-4,793	-4,768	-4,744	-4,719	-4,694	-4,669
-140	-4,669	-4,644	-4,618	-4,593	-4,567	-4,542	-4,516	-4,490	-4,463	-4,437	-4,411
-130	-4,411	-4,384	-4,357	-4,330	-4,303	-4,276	-4,249	-4,221	-4,194	-4,166	-4,138
-120	-4,138	-4,110	-4,082	-4,054	-4,025	-3,997	-3,968	-3,939	-3,911	-3,882	-3,852
-110	-3,852	-3,823	-3,794	-3,764	-3,734	-3,705	-3,675	-3,645	-3,614	-3,584	-3,554
-100	-3,554	-3,523	-3,492	-3,462	-3,431	-3,400	-3,368	-3,337	-3,3060	-3,274	-3,243
-90	-3,243	-3,211	-3,179	-3,147	-3,115	-3,083	-3,050	-3,018	-2,986	-2,953	-2,920
-80	-2,920	-2,887	-2,854	-2,821	-2,788	-2,755	-2,721	-2,688	-2,654	-2,620	-2,587
-70	-2,587	-2,553	-2,519	-2,485	-2,450	-2,416	-2,382	-2,347	-2,312	-2,278	-2,243
-60	-2,243	-2,208	-2,173	-2,138	-2,103	-2,067	-2,032	-1,996	-1,961	-1,925	-1,889
-50	-1,889	-1,854	-1,818	-1,782	-1,745	-1,709	-1,673	-1,637	-1,600	-1,564	-1,527
-40	-1,527	-1,490	-1,453	-1,417	-1,380	-1,343	-1,305	-1,268	-1,231	-1,194	-1,156
-30	-1,156	-1,119	-1,081	-1,043	-1,006	-0,968	-0,930	-0,892	-0,854	-0,816	-0,778
-20	-0,778	-0,739	-0,701	-0,663	-0,624	-0,586	-0,547	-0,508	-0,470	-0,431	-0,392
-10	-0,392	-0,353	-0,314	-0,275	-0,236	-0,197	-0,157	-0,118	-0,079	-0,039	0,000
0	0,000	0,039	0,079	0,119	0,158	0,198	0,238	0,277	0,317	0,357	0,397
10	0,397	0,437	0,477	0,517	0,557	0,597	0,637	0,677	0,718	0,758	0,798
20	0,798	0,838	0,879	0,919	0,960	1,000	1,041	1,081	1,122	1,163	1,203
30	1,203	1,244	1,285	1,326	1,366	1,407	1,448	1,489	1,530	1,571	1,612
40	1,612	1,653	1,694	1,735	1,776	1,817	1,858	1,899	1,941	1,982	2,023
50	2,023	2,064	2,106	2,147	2,188	2,230	2,271	2,312	2,354	2,395	2,436
60	2,436	2,478	2,519	2,561	2,602	2,644	2,685	2,727	2,768	2,810	2,851
70	2,851	2,893	2,934	2,976	3,017	3,059	3,100	3,142	3,184	3,225	3,267
80	3,267	3,308	3,350	3,391	3,433	3,474	3,516	3,557	3,599	3,640	3,682
90	3,682	3,723	3,765	3,806	3,848	3,889	3,931	3,972	4,013	4,055	4,096
100	4,096	4,138	4,179	4,220	4,262	4,303	4,344	4,385	4,427	4,468	4,509
110	4,509	4,550	4,591	4,633	4,674	4,715	4,756	4,797	4,838	4,879	4,920

Nickel-Chrom-Nickel (NiCr-Ni) "K"

	0	1	2	3	4	5	6	7	8	9	10
120	4,920		5,002	5,043	5,084	5,124	5,165		5,247	5,288	5,328
130	5,328	4,961 5,369	5,410	5,450	5,491	5,532	5,572	5,206 5,613	5,653	5,694	5,735
140	5,735	5,775	5,815	5,856	5,896	5,937	5,977	6,017	6,058	6,098	6,138
150	6,138	6,179	6,219	6,259	6,299	6,339	6,380	6,420	6,460	6,500	6,540
160	6,540	6,580	6,620	6,660	6,701	6,741	6,781	6,821	6,861	6,901	6,941
170	6,941	6,981	7,021	7,060	7,100	7,140	7,180	7,220	7,260	7,300	7,340
180	7,340	7,380	7,420	7,460	7,500	7,540	7,579	7,619	7,659	7,699	7,739
190	7,739	7,779	7,819	7,859	7,899	7,939	7,979	8,019	8,059	8,099	8,138
200	8,138	8,178	8,218	8,258	8,298	8,338	8,378	8,418	8,458	8,499	8,539
210	8,539	8,579	8,619	8,659	8,699	8,739	8,779	8,819	8,860	8,900	8,940
220	8,940	8,980	9,020	9,061	9,101	9,141	9,181	9,222	9,262	9,302	9,343
230	9,343	9,383	9,423	9,464	9,504	9,545	9,585	9,626	9,666	9,707	9,747
240	9,747	9,788	9,828	9,869	9,909	9,950	9,991	10,031	10,072	10,113	10,153
250	10,153	10,194	10,235	10,276	10,316	10,357	10,398	10,439	10,480	10,520	10,561
260	10,561	10,602	10,643	10,684	10,725	10,766	10,807	10,848	10,889	10,930	10,971
270	10,971	11,012	11,053	11,094	11,135	11,176	11,217	11,259	11,300	11,341	11,382
280	11,382	11,423	11,465	11,506	11,547	11,588	11,630	11,671	11,712	11,753	11,795
290	11,795	11,836	11,877	11,919	11,960	12,001	12,043	12,084	12,126	12,167	12,209
300	12,209	12,250	12,291	12,333	12,374	12,416	12,457	12,499	12,540	12,582	12,624
310	12,624	12,665	12,707	12,748	12,790	12,831	12,873	12,915	12,956	12,998	13,040
320	13,040	13,081	13,123	13,165	13,206	13,248	13,290	13,331	13,373	13,415	13,457
330	13,457	13,498	13,540	13,582	13,624	13,665	13,707	13,749	13,791	13,833	13,874
340	13,874	13,916	13,958	14,000	14,042	14,084	14,126	14,167	14,209	14,251	14,293
350	14,293	14,335	14,377	14,419	14,461	14,503	14,545	14,587	14,629	14,671	14,713
360	14,713	14,755	14,797	14,839	14,881	14,923	14,965	15,007	15,049	15,091	15,133
370	15,133	15,175	15,217	15,259	15,301	15,343	15,385	15,427	15,469	15,511	15,554
380	15,554	15,596	15,638	15,680	15,722	15,764	15,806	15,849	15,891	15,933	15,975
390	15,975	16,017	16,059	16,102	16,144	16,186	16,228	16,270	16,313	16,355	16,397
400	16,397	16,439	16,482	16,524	16,566	16,608	16,651	16,693	16,735	16,778	16,820
410	16,820	16,862	16,904	16,947	16,989	17,031	17,074	17,116	17,158	17,201	17,243
420	17,243	17,285	17,328	17,370	17,413	17,455	17,497	17,540	17,582	17,624	17,667
430	17,667	17,709	17,752	17,794	17,837	17,879	17,921	17,964	18,006	18,049	18,091
440	18,091	18,134	18,176	18,218	18,261	18,303	18,346	18,388	18,431	18,473	18,516
450	18,516	18,558	18,601	18,643	18,686	18,728	18,771	18,813	18,856	18,898	18,941
460	18,941	18,983	19,026	19,068	19,111	19,154	19,196	19,239	19,281	19,324	19,366
470	19,366	19,409	19,451	19,494	19,537	19,579	19,622	19,664	19,707	19,750	19,792
480	19,792	19,835	19,877	19,920	19,962	20,005	20,048	20,090	20,133	20,175	20,218
490	20,218	20,261	20,303	20,346	20,389	20,431	20,474	20,516	20,559	20,602	20,644
500	20,644	20,687	20,730	20,772	20,815	20,857	20,900	20,943	20,985	21,028	21,071

Nickel-Chrom-Nickel (NiCr-Ni) "K"

,	0	1	2	3	4	5	6	7	8	9	10
510	21,071	21,113	21,156	21,199	21,241	21,284	21,326	21,369	21,412	21,454	21,497
520	21,497	21,540	21,582	21,625	21,668	21,710	21,753	21,796	21,838	21,881	21,924
530	21,924	21,966	22,009	22,052	22,094	22,137	22,179	22,222	22,265	22,307	22,350
540	22,350	22,393	22,435	22,478	22,521	22,563	22,606	22,649	22,691	22,734	22,776
550	22,776	22,819	22,862	22,904	22,947	22,990	23,032	23,075	23,117	23,160	23,203
560	23,203	23,245	23,288	23,331	23,373	23,416	23,458	23,501	23,544	23,586	23,629
570	23,629	23,671	23,714	23,757	23,799	23,842	23,884	23,927	23,970	24,012	24,055
580	24,055	24,097	24,140	24,182	24,225	24,267	24,310	24,353	24,395	24,438	24,480
590	24,480	24,523	24,565	24,608	24,650	24,693	24,735	24,778	24,820	24,863	24,905
600	24,905	24,948	24,990	25,033	25,075	25,118	25,160	25,203	25,245	25,288	25,330
610	25,330	25,373	25,415	25,458	25,500	25,543	25,585	25,627	25,670	25,712	25,755
620	25,755	25,797	25,840	25,882	25,924	25,967	26,009	26,052	26,094	26,136	26,179
630	26,179	26,221	26,263	26,306	26,348	26,390	26,433	26,475	26,517	26,560	26,602
640	26,602	26,644	26,687	26,729	26,771	26,814	26,856	26,898	26,940	26,983	27,025
650	27,025	27,067	27,109	27,152	27,194	27,236	27,278	27,320	27,363	27,405	27,447
660	27,447	27,489	27,531	27,574	27,616	27,658	27,700	27,742	27,784	27,826	27,869
670	27,869	27,911	27,953	27,995	28,037	28,079	28,121	28,163	28,205	28,247	28,289
680	28,289	28,332	28,374	28,416	28,458	28,500	28,542	28,584	28,626	28,668	28,710
690	28,710	28,752	28,794	28,835	28,877	28,919	28,961	29,003	29,045	29,087	29,129
700	29,129	29,171	29,213	29,255	29,297	29,338	29,380	29,422	29,464	29,506	29,548
710	29,548	29,589	29,631	29,673	29,715	29,757	29,798	29,840	29,882	29,924	29,965
720	29,965	30,007	30,049	30,090	30,132	30,174	30,216	30,257	30,299	30,341	30,382
730	30,382	30,424	30,466	30,507	30,549	30,590	30,632	30,674	30,715	30,757	30,798
740	30,798	30,840	30,881	30,923	30,964	31,006	31,047	31,089	31,130	31,172	31,213
750	31,213	31,255	31,296	31,338	31,379	31,421	31,462	31,504	31,545	31,586	31,628
760	31,628	31,669	31,710	31,752	31,793	31,834	31,876	31,917	31,958	32,000	32,041
770	32,041	32,082	32,124	32,165	32,206	32,247	32,289	32,330	32,371	32,412	32,453
780	32,453	32,495	32,536	32,577	32,618	32,659	32,700	32,742	32,783	32,824	32,865
790	32,865	32,906	32,947	32,988	33,029	33,070	33,111	33,152	33,193	33,234	33,275
800	33,275	33,316	33,357	33,398	33,439	33,480	33,521	33,562	33,603	33,644	33,685
810	33,685	33,726	33,767	33,808	33,848	33,889	33,930	33,971	34,012	34,053	34,093
820	34,093	34,134	34,175	34,216	34,257	34,297	34,338	34,379	34,420	34,460	34,501
830	34,501	34,542	34,582	34,623	34,664	34,704	34,745	34,786	34,826	34,867	34,908
840	34,908	34,948	34,989	35,029	35,070	35,110	35,151	35,192	35,232	35,273	35,313
850	35,313	35,354	35,394	35,435	35,475	35,516	35,556	35,596	35,637	35,677	35,718
860	35,718	35,758	35,798	35,839	35,879	35,920	35,960	36,000	36,041	36,081	36,121
870	36,121	36,162	36,202	36,242	36,282	36,323	36,363	36,403	36,443	36,484	36,524
880	36,524	36,564	36,604	36,644	36,685	36,725	36,765	36,805	36,845	36,885	36,925
890	36,925	36,965	37,006	37,046	37,086	37,126	37,166	37,206	37,246	37,286	37,326

Nickel-Chrom-Nickel (NiCr-Ni) "K"

	0	1	2	3	4	5	6	7	8	9	10
900	37,326	37,366	37,406	37,446	37,486	37,526	37,566	37,606	37,646	37,686	37,725
910	37,725	37,765	37,805	37,845	37,885	37,925	37,965	38,005	38,044	38,084	38,124
920	38,124	38,164	38,204	38,243	38,283	38,323	38,363	38,402	38,442	38,482	38,522
930	38,522	38,561	38,601	38,641	38,680	38,720	38,760	38,799	38,839	38,878	38,918
940	38,918	38,958	38,997	39,037	39,076	39,116	39,155	39,195	39,235	39,274	39,314
950	39,314	39,353	39,393	39,432	39,471	39,511	39,550	39,590	39,629	39,669	39,708
960	39,708	39,747	39,787	39,826	39,866	39,905	39,944	39,984	40,023	40,062	40,101
970	40,101	40,141	40,180	40,219	40,259	40,298	40,337	40,376	40,415	40,455	40,494
980	40,494	40,533	40,572	40,611	40,651	40,690	40,729	40,768	40,807	40,846	40,885
990	40,885	40,924	40,963	41,002	41,042	41,081	41,120	41,159	41,198	41,237	41,276
1000	41,276	41,315	41,354	41,393	41,431	41,470	41,509	41,548	41,587	41,626	41,665
1010	41,665	41,704	41,743	41,781	41,820	41,859	41,898	41,937	41,976	42,014	42,053
1020	42,053	42,092	42,131	42,169	42,208	42,247	42,286	42,324	42,363	42,402	42,440
1030	42,440	42,479	42,518	42,556	42,595	42,633	42,672	42,711	42,749	42,788	42,826
1040	42,826	42,865	42,903	42,942	42,980	43,019	43,057	43,096	43,134	43,173	43,211
1050	43,211	43,250	43,288	43,327	43,365	43,403	43,442	43,480	43,518	43,557	43,595
1060	43,595	43,633	43,672	43,710	43,748	43,787	43,825	43,863	43,901	43,940	43,978
1070	43,978	44,016	44,054	44,092	44,130	44,169	44,207	44,245	44,283	44,321	44,359
1080	44,359	44,397	44,435	44,473	44,512	44,550	44,588	44,626	44,664	44,702	44,740
1090	44,740	44,778	44,816	44,853	44,891	44,929	44,967	45,005	45,043	45,081	45,119
1100	45,119	45,157	45,194	45,232	45,270	45,308	45,346	45,383	45,421	45,459	45,497
1110	45,497	45,534	45,572	45,610	45,647	45,685	45,723	45,760	45,798	45,836	45,873
1120	45,873	45,911	45,948	45,986	46,024	46,061	46,099	46,136	46,174	46,211	46,249
1130	46,249	46,286	46,324	46,361	46,398	46,436	46,473	46,511	46,548	46,585	46,623
1140	46,623	46,660	46,697	46,735	46,772	46,809	46,847	46,884	46,921	46,958	46,995
1150	46,995	47,033	47,070	47,107	47,144	47,181	47,218	47,256	47,293	47,330	47,367
1160	47,367	47,404	47,441	47,478	47,515	47,552	47,589	47,626	47,663	47,700	47,737
1170	47,737	47,774	47,811	47,848	47,884	47,921	47,958	47,995	48,032	48,069	48,105
1180	48,105	48,142	48,179	48,216	48,252	48,289	48,326	48,363	48,399	48,436	48,473
1190	48,473	48,509	48,546	48,582	48,619	48,656	48,692	48,729	48,765	48,802	48,838
1200	48,838	48,875	48,911	48,948	48,984	49,021	49,057	49,093	49,130	49,166	49,202
1210	49,202	49,239	49,275	49,311	49,348	49,384	49,420	49,456	49,493	49,529	49,565
1220	49,565	49,601	49,637	49,674	49,710	49,746	49,782	49,818	49,854	49,890	49,926
1230	49,926	49,962	49,998	50,034	50,070	50,106	50,142	50,178	50,214	50,250	50,286
1240	50,286	50,322	50,358	50,393	50,429	50,465	50,501	50,537	50,572	50,608	50,644
1250	50,644	50,680	50,715	50,751	50,787	50,822	50,858	50,894	50,929	50,965	51,000
1260	51,000	51,036	51,071	51,107	51,142	51,178	51,213	51,249	51,284	51,320	51,355
1270	51,355	51,391	51,426	51,461	51,497	51,532	51,567	51,603	51,638	51,673	51,708
1280	51,708	51,744	51,779	51,814	51,849	51,885	51,920	51,955	51,990	52,025	52,060

Nickel-Chrom-Nickel (NiCr-Ni) "K"

	0	1	2	3	4	5	6	7	8	9	10
1290	52,060	52,095	52,130	52,165	52,200	52,235	52,270	52,305	52,340	52,375	52,410
1300	52,410	52,445	52,480	52,515	52,550	52,585	52,620	52,654	52,689	52,724	52,759
1310	52,759	52,794	52,828	52,863	52,898	52,932	52,967	53,002	53,037	53,071	53,106
1320	53,106	53,140	53,175	53,210	53,244	53,279	53,313	53,348	53,382	53,417	53,451
1330	53,451	53,486	53,520	53,555	53,589	53,623	53,658	53,692	53,727	53,761	53,795
1340	53,795	53,830	53,864	53,898	53,932	53,967	54,001	54,035	54,069	54,104	54,138
1350	54,138	54,172	54,206	54,240	54,274	54,308	54,343	54,377	54,411	54,445	54,479
1360	54,479	54,513	54,547	54,581	54,615	54,649	54,683	54,717	54,751	54,785	54,819
1370	54,819	54,852	54,886								

11.3.6 Nickel-Chrom-Konstantan (NiCr-CuNi) "E"

-270		0	1	2	3	4	5	6	7	8	9	10
260 -9,797 -9,790 -9,784 -9,777 -9,770 -9,762 -9,754 -9,746 -9,737 -9,728 -9,7 250 -9,718 -9,709 -9,688 -9,688 -9,677 -9,666 -9,654 -9,642 -9,630 -9,617 -9,6 240 -9,604 -9,591 -9,577 -9,563 -9,548 -9,534 -9,519 -9,503 -9,487 -9,471 -9,4 220 -9,455 -9,438 -9,421 -9,404 -9,386 -9,368 -9,350 -9,331 -9,313 -9,931 -9,219 -9,077 -9,083 -9,421 -9,107 -9,083 -9,207 -9,083 -9,224 -9,234 -9,214 -9,119 -9,129 -9,107 -9,085 -9,09 -9,09 -9,024 -9,214 -9,119 -9,129 -9,107 -9,085 -9,07 -9,083 -9,244 -8,821 -8,911 -8,923 -8,848 -8,874 -8,861 -8,888 -8,874 -8,874 -8,841	070							-				
250 -9,718 -9,709 -9,688 -9,688 -9,677 -9,666 -9,654 -9,632 -9,630 -9,617 -9,6 240 -9,604 -9,591 -9,577 -9,563 -9,584 -9,534 -9,519 -9,503 -9,487 -9,471 -9,4 220 -9,455 -9,438 -9,421 -9,404 -9,366 -9,368 -9,350 -9,311 -9,313 -9,233 -9,23 -9,2 220 -9,274 -9,254 -9,234 -9,214 -9,193 -9,172 -9,151 -9,129 -9,107 -9,063 -9,069 -8,069 -8,669 -8,603 -8,868 -8,674 -8,850 -8,8 -200 -8,625 -8,799 -8,744 -8,748 -8,722 -8,699 -8,663 -8,616 -8,833 -8,555 -8,477 -8,449 -8,420 -8,391 -8,362 -8,333 -8,033 -8,213 -8,183 -8,152 -8,121 -8,090 -8,059 -8,027 -7,995 -												
-240 -9,604 -9,591 -9,577 -9,563 -9,548 -9,534 -9,519 -9,603 -9,487 -9,471 -9,43 -230 -9,455 -9,438 -9,241 -9,404 -9,386 -9,368 -9,350 -9,331 -9,313 -9,233 -9,23 -9,24 -200 -9,063 -9,040 -9,017 -8,994 -8,971 -6,947 -8,923 -8,899 -8,874 -8,650 -8,88 -200 -8,825 -8,799 -8,774 -8,748 -8,722 -8,669 -8,669 -8,661 -8,681 -8,588 -8,5 -180 -8,533 -8,505 -8,477 -8,449 -8,420 -8,391 -8,362 -8,333 -8,303 -8,233 -8,362 -8,333 -8,233 -8,303 -8,223 -8,089 -8,874 -8,429 -8,420 -8,391 -8,362 -8,874 -8,479 -8,420 -8,331 -8,362 -8,873 -8,303 -8,224 -8,217 -7,963 -7,757												-9,718
-230 -9,455 -9,438 -9,421 -9,404 -9,386 -9,350 -9,331 -9,313 -9,293 -9,2 -220 -9,274 -9,254 -9,234 -9,214 -9,193 -9,172 -9,151 -9,129 -9,107 -9,085 -9,0 -200 -8,063 -9,040 -9,017 -8,994 -8,971 -8,947 -8,923 -8,899 -8,874 -8,850 -8,8 -190 -8,561 -8,533 -8,505 -8,477 -8,449 -8,420 -8,391 -8,662 -8,333 -8,303 -8,533 -8,505 -8,477 -8,449 -8,420 -8,391 -8,662 -8,333 -8,303 -8,233 -8,505 -8,477 -8,449 -8,420 -8,991 -8,669 -8,027 -7,996 -7,996 -7,980 -7,798 -7,866 -7,66 -7,66 -7,66 -7,66 -7,66 -7,66 -7,67 -7,733 -7,700 -7,666 -7,6 -7,528 -7,493 -7,458 -7,423											·	-9,604
-220 -9,274 -9,254 -9,234 -9,214 -9,193 -9,172 -9,151 -9,129 -9,107 -9,085 -9,0 -210 -9,063 -9,040 -9,017 -8,994 -8,971 -8,947 -8,923 -8,899 -8,874 -8,850 -8,88 -200 -8,825 -8,799 -8,774 -8,748 -8,722 -8,696 -8,669 -8,643 -8,616 -8,588 -8,5 -190 -8,561 -8,533 -8,055 -8,477 -8,449 -8,420 -8,391 -8,362 -8,333 -8,303 -8,23 -170 -7,593 -7,931 -7,899 -7,866 -7,831 -7,939 -7,666 -7,832 -7,931 -7,939 -7,566 -7,528 -7,493 -7,468 -7,423 -7,037 -7,700 -7,666 -7,63 -7,528 -7,493 -7,468 -7,023 -7,331 -7,351 -7,351 -7,351 -7,351 -7,351 -7,351 -7,351 -7,351 -7,351												-9,455
-210 -9,063 -9,040 -9,017 -8,994 -8,971 -8,947 -8,923 -8,899 -8,874 -8,850 -8,88 -200 -8,825 -8,799 -8,774 -8,748 -8,722 -8,696 -8,669 -8,643 -8,616 -8,588 -8,55 -190 -8,561 -8,533 -8,505 -8,477 -8,449 -8,420 -8,391 -8,662 -8,333 -8,303 -8,23 -170 -7,963 -7,991 -7,899 -7,866 -7,833 -7,800 -7,767 -7,733 -7,700 -7,666 -7,6 -160 -7,632 -7,597 -7,563 -7,528 -7,493 -7,458 -7,423 -7,351 -7,315 -7,215 -7,315 -7,315 -7,215 -7,351 -7,315 -7,315 -7,215 -1,316 -6,22 -1,533 -6,792 -6,733 -7,493 -7,458 -7,423 -7,337 -7,351 -7,315 -7,215 -1,315 -7,22 -1,566 -6,315												-9,274
-200 -8,825 -8,799 -8,774 -8,748 -8,722 -8,699 -8,669 -8,643 -8,616 -8,588 -8,5 -190 -8,561 -8,533 -8,505 -8,477 -8,449 -8,420 -8,391 -8,362 -8,333 -8,303 -8,23 -180 -8,273 -8,243 -8,213 -8,183 -8,152 -8,121 -8,090 -8,059 -8,027 -7,995 -7,99 -7,963 -7,991 -7,899 -7,866 -7,833 -7,800 -7,767 -7,733 -7,700 -7,666 -7,6 -7,600 -7,677 -7,733 -7,700 -7,666 -7,6 -7,600 -7,700 -7,666 -7,6 -7,650 -7,279 -7,243 -7,528 -7,433 -7,409 -7,058 -7,021 -6,983 -6,946 -6,99 -140 -6,907 -6,869 -6,831 -6,792 -6,753 -6,714 -6,627 -6,596 -6,556 -6,5 -100 -6,516 -6,476 -												-9,063
190				-								-8,825
-180 -8,273 -8,243 -8,213 -8,183 -8,152 -8,121 -8,090 -8,059 -8,027 -7,995 -7,995 -7,99 -7,963 -7,931 -7,899 -7,866 -7,833 -7,800 -7,767 -7,733 -7,700 -7,666 -7,66 -7,670 -7,672 -7,733 -7,700 -7,666 -7,66 -7,670 -7,672 -7,733 -7,700 -7,666 -7,66 -7,670 -7,733 -7,021 -7,351 -7,315 -7,2 -150 -7,279 -7,243 -7,206 -7,170 -7,133 -7,096 -7,058 -7,021 -6,983 -6,945 -6,99 -140 -6,907 -6,869 -6,831 -6,792 -6,753 -6,714 -6,675 -6,636 -6,596 -6,556 -6,5 -130 -6,516 -6,476 -6,436 -6,396 -5,593 -5,593 -5,593 -5,593 -5,593 -5,593 -5,593 -5,593 -5,594 -5,505 -5,461 -5,417 -6,101 <th></th> <th>-8,561</th>												-8,561
170	-190	-8,561			-8,477	-8,449	-8,420	-8,391		-8,333	-8,303	-8,273
-160 -7,632 -7,597 -7,563 -7,528 -7,493 -7,458 -7,423 -7,351 -7,315 -7,21 -150 -7,279 -7,243 -7,206 -7,170 -7,133 -7,096 -7,058 -7,021 -6,983 -6,945 -6,99 -140 -6,907 -6,869 -6,831 -6,792 -6,753 -6,714 -6,636 -6,596 -6,556 -6,55 -130 -6,516 -6,476 -6,436 -6,396 -6,355 -6,314 -6,232 -6,191 -6,149 -6,1 -120 -6,107 -6,065 -6,023 -5,981 -5,939 -5,896 -5,853 -5,810 -5,767 -5,724 -5,6 -100 -5,237 -5,192 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,7 -90 -4,777 -4,731 -4,684 -4,639 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,364	-180		-8,243	-8,213	-8,183	-8,152	-8,121	-8,090	-8,059	-8,027	-7,995	-7,963
-150 -7,279 -7,243 -7,206 -7,170 -7,133 -7,096 -7,058 -7,021 -6,983 -6,945 -6,99 -140 -6,907 -6,869 -6,831 -6,792 -6,753 -6,714 -6,675 -6,636 -6,596 -6,556 -6,55 -130 -6,516 -6,476 -6,436 -6,396 -6,355 -6,314 -6,273 -6,232 -6,191 -6,149 -6,1 -100 -5,681 -5,637 -5,593 -5,549 -5,505 -5,461 -5,417 -5,327 -5,282 -5,2 -100 -5,237 -5,192 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,7 -90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,3 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,510 -3,459 -3,408 -3,357	-170	-7,963	-7,931	-7,899	-7,866	-7,833	-7,800	-7,767	-7,733	-7,700	-7,666	-7,632
-140 -6,907 -6,869 -6,831 -6,792 -6,753 -6,714 -6,675 -6,636 -6,596 -6,556 -6,556 -6,516 -6,476 -6,436 -6,396 -6,355 -6,314 -6,273 -6,232 -6,191 -6,149 -6,11 -120 -6,107 -6,065 -6,023 -5,981 -5,939 -5,896 -5,853 -5,810 -5,767 -5,724 -5,66 -110 -5,681 -5,637 -5,593 -5,549 -5,055 -5,461 -5,417 -5,372 -5,282 -5,22 -5,22 -100 -5,237 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,7 -90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,33 -80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,658 -4,009 -3,960 -3,911 -3,861 -3,5	-160	-7,632	-7,597	-7,563	-7,528	-7,493	-7,458	-7,423	-7,387	-7,351	-7,315	-7,279
-130 -6,516 -6,476 -6,436 -6,396 -6,355 -6,314 -6,273 -6,232 -6,191 -6,149 -6,11 -120 -6,107 -6,065 -6,023 -5,981 -5,939 -5,896 -5,853 -5,810 -5,767 -5,724 -5,6 -110 -5,681 -5,637 -5,593 -5,549 -5,505 -5,461 -5,417 -5,372 -5,282 -5,282 -5,2 -100 -5,237 -5,192 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,7 -90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,3 -80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,058 -4,009 -3,960 -3,911 -3,861 -3,8 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459	-150	-7,279	-7,243	-7,206	-7,170	-7,133	-7,096	-7,058	-7,021	-6,983	-6,945	-6,907
-120 -6,107 -6,065 -6,023 -5,981 -5,939 -5,896 -5,853 -5,810 -5,767 -5,724 -5,66 -110 -5,681 -5,637 -5,593 -5,549 -5,505 -5,461 -5,417 -5,327 -5,282 -5,2 -100 -5,237 -5,192 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,7 -90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,3 -80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,058 -4,009 -3,960 -3,911 -3,861 -3,8 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459 -3,408 -3,357 -3,3 -60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,994 -2,416 -2,362	-140	-6,907	-6,869	-6,831	-6,792	-6,753	-6,714	-6,675	-6,636	-6,596	-6,556	-6,516
-110 -5,681 -5,637 -5,593 -5,549 -5,505 -5,461 -5,417 -5,372 -5,327 -5,282 -5,2 -100 -5,237 -5,192 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,7 -90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,3 -80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,058 -4,009 -3,960 -3,911 -3,861 -3,8 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459 -3,408 -3,357 -3,3 -60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,996 -2,944 -2,892 -2,840 -2,7 -50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,7 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,1 -20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 -10 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 -10 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 -10 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	-130	-6,516	-6,476	-6,436	-6,396	-6,355	-6,314	-6,273	-6,232	-6,191	-6,149	-6,107
-100 -5,237 -5,192 -5,147 -5,101 -5,055 -5,009 -4,963 -4,917 -4,871 -4,824 -4,77 -90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,3 -80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,058 -4,009 -3,960 -3,911 -3,861 -3,8 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459 -3,408 -3,357 -3,33 -60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,996 -2,944 -2,892 -2,840 -2,7 -50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874	-120	-6,107	-6,065	-6,023	-5,981	-5,939	-5,896	-5,853	-5,810	-5,767	-5,724	-5,681
-90 -4,777 -4,731 -4,684 -4,636 -4,589 -4,542 -4,494 -4,446 -4,398 -4,350 -4,3 -80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,058 -4,009 -3,960 -3,911 -3,861 -3,8 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459 -3,408 -3,357 -3,3 -60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,996 -2,944 -2,892 -2,840 -2,7 -50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,7 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 <t< th=""><th>-110</th><th>-5,681</th><th>-5,637</th><th>-5,593</th><th>-5,549</th><th>-5,505</th><th>-5,461</th><th>-5,417</th><th>-5,372</th><th>-5,327</th><th>-5,282</th><th>-5,237</th></t<>	-110	-5,681	-5,637	-5,593	-5,549	-5,505	-5,461	-5,417	-5,372	-5,327	-5,282	-5,237
-80 -4,302 -4,254 -4,205 -4,156 -4,107 -4,058 -4,009 -3,960 -3,911 -3,861 -3,8 -70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459 -3,408 -3,357 -3,3 -60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,996 -2,944 -2,892 -2,840 -2,7 -50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,7 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 <t< th=""><th>-100</th><th>-5,237</th><th>-5,192</th><th>-5,147</th><th>-5,101</th><th>-5,055</th><th>-5,009</th><th>-4,963</th><th>-4,917</th><th>-4,871</th><th>-4,824</th><th>-4,777</th></t<>	-100	-5,237	-5,192	-5,147	-5,101	-5,055	-5,009	-4,963	-4,917	-4,871	-4,824	-4,777
-70 -3,811 -3,761 -3,711 -3,661 -3,611 -3,561 -3,510 -3,459 -3,408 -3,357 -3,3 -60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,996 -2,944 -2,892 -2,840 -2,7 -50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,7 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 <t< th=""><th>-90</th><th>-4,777</th><th>-4,731</th><th>-4,684</th><th>-4,636</th><th>-4,589</th><th>-4,542</th><th>-4,494</th><th>-4,446</th><th>-4,398</th><th>-4,350</th><th>-4,302</th></t<>	-90	-4,777	-4,731	-4,684	-4,636	-4,589	-4,542	-4,494	-4,446	-4,398	-4,350	-4,302
-60 -3,306 -3,255 -3,204 -3,152 -3,100 -3,048 -2,996 -2,944 -2,892 -2,840 -2,77 -50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,7 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 <th>-80</th> <th>-4,302</th> <th>-4,254</th> <th>-4,205</th> <th>-4,156</th> <th>-4,107</th> <th>-4,058</th> <th>-4,009</th> <th>-3,960</th> <th>-3,911</th> <th>-3,861</th> <th>-3,811</th>	-80	-4,302	-4,254	-4,205	-4,156	-4,107	-4,058	-4,009	-3,960	-3,911	-3,861	-3,811
-50 -2,787 -2,735 -2,682 -2,629 -2,576 -2,523 -2,469 -2,416 -2,362 -2,309 -2,2 -40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,7 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 <t< th=""><th>-70</th><th>-3,811</th><th>-3,761</th><th>-3,711</th><th>-3,661</th><th>-3,611</th><th>-3,561</th><th>-3,510</th><th>-3,459</th><th>-3,408</th><th>-3,357</th><th>-3,306</th></t<>	-70	-3,811	-3,761	-3,711	-3,661	-3,611	-3,561	-3,510	-3,459	-3,408	-3,357	-3,306
-40 -2,255 -2,201 -2,147 -2,093 -2,038 -1,984 -1,929 -1,874 -1,820 -1,765 -1,77 -30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,1 20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 <th>-60</th> <th>-3,306</th> <th>-3,255</th> <th>-3,204</th> <th>-3,152</th> <th>-3,100</th> <th>-3,048</th> <th>-2,996</th> <th>-2,944</th> <th>-2,892</th> <th>-2,840</th> <th>-2,787</th>	-60	-3,306	-3,255	-3,204	-3,152	-3,100	-3,048	-2,996	-2,944	-2,892	-2,840	-2,787
-30 -1,709 -1,654 -1,599 -1,543 -1,488 -1,432 -1,376 -1,320 -1,264 -1,208 -1,1 -20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,1 20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 <th< th=""><th>-50</th><th>-2,787</th><th>-2,735</th><th>-2,682</th><th>-2,629</th><th>-2,576</th><th>-2,523</th><th>-2,469</th><th>-2,416</th><th>-2,362</th><th>-2,309</th><th>-2,255</th></th<>	-50	-2,787	-2,735	-2,682	-2,629	-2,576	-2,523	-2,469	-2,416	-2,362	-2,309	-2,255
-20 -1,152 -1,095 -1,039 -0,982 -0,925 -0,868 -0,811 -0,754 -0,697 -0,639 -0,5 -10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,1 20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0	-40	-2,255	-2,201	-2,147	-2,093	-2,038	-1,984	-1,929	-1,874	-1,820	-1,765	-1,709
-10 -0,582 -0,524 -0,466 -0,408 -0,350 -0,292 -0,234 -0,176 -0,117 -0,059 0,0 0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,1 20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6	-30	-1,709	-1,654	-1,599	-1,543	-1,488	-1,432	-1,376	-1,320	-1,264	-1,208	-1,152
0 0,000 0,059 0,118 0,176 0,235 0,294 0,354 0,413 0,472 0,532 0,5 10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,1 20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6 60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	-20	-1,152	-1,095	-1,039	-0,982	-0,925	-0,868	-0,811	-0,754	-0,697	-0,639	-0,582
10 0,591 0,651 0,711 0,770 0,830 0,890 0,950 1,010 1,071 1,131 1,11 20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6 60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	-10	-0,582	-0,524	-0,466	-0,408	-0,350	-0,292	-0,234	-0,176	-0,117	-0,059	0,000
20 1,192 1,252 1,313 1,373 1,434 1,495 1,556 1,617 1,678 1,740 1,8 30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6 60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	0	0,000	0,059	0,118	0,176	0,235	0,294	0,354	0,413	0,472	0,532	0,591
30 1,801 1,862 1,924 1,986 2,047 2,109 2,171 2,233 2,295 2,357 2,4 40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6 60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	10	0,591	0,651	0,711	0,770	0,830	0,890	0,950	1,010	1,071	1,131	1,192
40 2,420 2,482 2,545 2,607 2,670 2,733 2,795 2,858 2,921 2,984 3,0 50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6 60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	20	1,192	1,252	1,313	1,373	1,434	1,495	1,556	1,617	1,678	1,740	1,801
50 3,048 3,111 3,174 3,238 3,301 3,365 3,429 3,492 3,556 3,620 3,6 60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	30	1,801	1,862	1,924	1,986	2,047	2,109	2,171	2,233	2,295	2,357	2,420
60 3,685 3,749 3,813 3,877 3,942 4,006 4,071 4,136 4,200 4,265 4,3	40	2,420	2,482	2,545	2,607	2,670	2,733	2,795	2,858	2,921	2,984	3,048
	50	3,048	3,111	3,174	3,238	3,301	3,365	3,429	3,492	3,556	3,620	3,685
70 4,330 4,395 4,460 4,526 4,591 4,656 4,722 4,788 4,853 4,919 4,9	60	3,685	3,749	3,813	3,877	3,942	4,006	4,071	4,136	4,200	4,265	4,330
	70	4,330	4,395	4,460	4,526	4,591	4,656	4,722	4,788	4,853	4,919	4,985
80 4,985 5,051 5,117 5,183 5,249 5,315 5,382 5,448 5,514 5,581 5,6	80	4,985	5,051	5,117	5,183	5,249	5,315	5,382	5,448	5,514	5,581	5,648
90 5,648 5,714 5,781 5,848 5,915 5,982 6,049 6,117 6,184 6,251 6,3	90	5,648	5,714	5,781	5,848	5,915	5,982	6,049	6,117	6,184	6,251	6,319
100 6,319 6,386 6,454 6,522 6,590 6,658 6,725 6,794 6,862 6,930 6,9	100	6,319	6,386	6,454	6,522	6,590	6,658	6,725	6,794	6,862	6,930	6,998
110 6,998 7,066 7,135 7,203 7,272 7,341 7,409 7,478 7,547 7,616 7,6	110	6,998	7,066	7,135	7,203	7,272	7,341	7,409	7,478	7,547	7,616	7,685

Nickel-Chrom-Konstantan (NiCr-CuNi) "E"

	0	1	2	3	4	5	6	7	8	9	10
120	7,685	7,754	7,823	7,892	7,962	8,031	8,101	8,170	8,240	8,309	8,379
130	8,379	8,449	8,519	8,589	8,659	8,729	8,799	8,869	8,940	9,010	9,081
140	9,081	9,151	9,222	9,292	9,363	9,434	9,505	9,576	9,647	9,718	9,789
150	9,789	9,860	9,931	10,003	10,074	10,145	10,217	10,288	10,360	10,432	10,503
160	10,503	10,575	10,647	10,719	10,791	10,863	10,935	11,007	11,080	11,152	11,224
170	11,224	11,297	11,369	11,442	11,514	11,587	11,660	11,733	11,805	11,878	11,951
180	11,951	12,024	12,097	12,170	12,243	12,317	12,390	12,463	12,537	12,610	12,684
190	12,684	12,757	12,831	12,904	12,978	13,052	13,126	13,199	13,273	13,347	13,421
200	13,421	13,495	13,569	13,644	13,718	13,792	13,866	13,941	14,015	14,090	14,164
210	14,164	14,239	14,313	14,388	14,463	14,537	14,612	14,687	14,762	14,837	14,912
220	14,912	14,987	15,062	15,137	15,212	15,287	15,362	15,438	15,513	15,588	15,664
230	15,664	15,739	15,815	15,890	15,966	16,041	16,117	16,193	16,269	16,344	16,420
240	16,420	16,496	16,572	16,648	16,724	16,800	16,876	16,952	17,028	17,104	17,181
250	17,181	17,257	17,333	17,409	17,486	17,562	17,639	17,715	17,792	17,868	17,945
260	17,945	18,021	18,098	18,175	18,252	18,328	18,405	18,482	18,559	18,636	18,713
270	18,713	18,790	18,867	18,944	19,021	19,098	19,175	19,252	19,330	19,407	19,484
280	19,484	19,561	19,639	19,716	19,794	19,871	19,948	20,026	20,103	20,181	20,259
290	20,259	20,336	20,414	20,492	20,569	20,647	20,725	20,803	20,880	20,958	21,036
300	21,036	21,114	21,192	21,270	21,348	21,426	21,504	21,582	21,660	21,739	21,817
310	21,817	21,895	21,973	22,051	22,130	22,208	22,286	22,365	22,443	22,522	22,600
320	22,600	22,678	22,757	22,835	22,914	22,993	23,071	23,150	23,228	23,307	23,386
330	23,386	23,464	23,543	23,622	23,701	23,780	23,858	23,937	24,016	24,095	24,174
340	24,174	24,253	24,332	24,411	24,490	24,569	24,648	24,727	24,806	24,885	24,964
350	24,964	25,044	25,123	25,202	25,281	25,360	25,440	25,519	25,598	25,678	25,757
360	25,757	25,836	25,916	25,995	26,075	26,154	26,233	26,313	26,392	26,472	26,552
370	26,552	26,631	26,711	26,790	26,870	26,950	27,029	27,109	27,189	27,268	27,348
380	27,348	27,428	27,507	27,587	27,667	27,747	27,827	27,907	27,986	28,066	28,146
390	28,146	28,226	28,306	28,386	28,466	28,546	28,626	28,706	28,786	28,866	28,946

11.3.7 Nicrosil-Nisil (NiCrSi-NiSi) "N"

	0	1	2	3	4	5	6	7	8	9	10
070				-							
-270	-4,345	-4,345	-4,344	-4,344	-4,343	-4,342	-4,341	-4,340	-4,339	-4,337	-4,336
-260	-4,336	-4,334	-4,332	-4,330	-4,328	-4,326	-4,324	-4,321	-4,319	-4,316	-4,313
-250	-4,313	-4,310	-4,307	-4,304	-4,300	-4,297	-4,293	-4,289	-4,285	-4,281	-4,277
-240	-4,277	-4,273	-4,268	-4,263	-4,258	-4,254	-4,248	-4,243	-4,238	-4,232	-4,226
-230	-4,226	-4,221	-4,215	-4,209	-4,202	-4,196	-4,189	-4,183	-4,176	-4,169	-4,162
-220	-4,162	-4,154	-4,147	-4,140	-4,132	-4,124	-4,116	-4,108	-4,100	-4,091	-4,083
-210	-4,083	-4,074	-4,066	-4,057	-4,048	-4,038	-4,029	-4,020	-4,010	-4,000	-3,990
-200	-3,990	-3,980	-3,970	-3,960	-3,950	-3,939	-3,928	-3,918	-3,907	-3,896	-3,884
-190	-3,884	-3,873	-3,862	-3,850	-3,838	-3,827	-3,815	-3,803	-3,790	-3,778	-3,766
-180	-3,766	-3,753	-3,740	-3,728	-3,715	-3,702	-3,688	-3,675	-3,662	-3,648	-3,634
-170	-3,634	-3,621	-3,607	-3,593	-3,578	-3,564	-3,550	-3,535	-3,521	-3,506	-3,491
-160	-3,491	-3,476	-3,461	-3,446	-3,431	-3,415	-3,400	-3,384	-3,368	-3,352	-3,336
-150	-3,336	-3,320	-3,304	-3,288	-3,271	-3,255	-3,238	-3,221	-3,205	-3,188	-3,171
-140	-3,171	-3,153	-3,136	-3,119	-3,101	-3,084	-3,066	-3,048	-3,030	-3,012	-2,994
-130	-2,994	-2,976	-2,958	-2,939	-2,921	-2,902	-2,883	-2,865	-2,846	-2,827	-2,808
-120	-2,808	-2,789	-2,769	-2,750	-2,730	-2,711	-2,691	-2,672	-2,652	-2,632	-2,612
-110	-2,612	-2,592	-2,571	-2,551	-2,531	-2,510	-2,490	-2,469	-2,448	-2,428	-2,407
-100	-2,407	-2,386	-2,365	-2,344	-2,322	-2,301	-2,280	-2,258	-2,237	-2,215	-2,193
-90	-2,193	-2,172	-2,150	-2,128	-2,106	-2,084	-2,062	-2,039	-2,017	-1,995	-1,972
-80	-1,972	-1,950	-1,927	-1,905	-1,882	-1,859	-1,836	-1,813	-1,790	-1,767	-1,744
-70	-1,744	-1,721	-1,698	-1,674	-1,651	-1,627	-1,604	-1,580	-1,557	-1,533	-1,509
-60	-1,509	-1,485	-1,462	-1,438	-1,414	-1,390	-1,366	-1,341	-1,317	-1,293	-1,269
-50	-1,269	-1,244	-1,220	-1,195	-1,171	-1,146	-1,122	-1,097	-1,072	-1,048	-1,023
-40	-1,023	-0,998	-0,973	-0,948	-0,923	-0,898	-0,873	-0,848	-0,823	-0,798	-0,772
-30	-0,772	-0,747	-0,722	-0,696	-0,671	-0,646	-0,620	-0,595	-0,569	-0,544	-0,518
-20	-0,518	-0,492	-0,467	-0,441	-0,415	-0,390	-0,364	-0,338	-0,312	-0,286	-0,260
-10	-0,260	-0,234	-0,209	-0,183	-0,157	-0,131	-0,104	-0,078	-0,052	-0,026	0,000
0	0,000	0,026	0,052	0,078	0,104	0,130	0,156	0,182	0,208	0,235	0,261
10	0,261	0,287	0,313	0,340	0,366	0,393	0,419	0,446	0,472	0,499	0,525
20	0,525	0,552	0,578	0,605	0,632	0,659	0,685	0,712	0,739	0,766	0,793
30	0,793	0,820	0,847	0,874	0,901	0,928	0,955	0,983	1,010	1,037	1,065
40	1,065	1,092	1,119	1,147	1,174	1,202	1,229	1,257	1,284	1,312	1,340
50	1,340	1,368	1,395	1,423	1,451	1,479	1,507	1,535	1,563	1,591	1,619
60	1,619	1,647	1,675	1,703	1,732	1,760	1,788	1,817	1,845	1,873	1,902
70	1,902	1,930	1,959	1,988	2,016	2,045	2,074	2,102	2,131	2,160	2,189
80	2,189	2,218	2,247	2,276	2,305	2,334	2,363	2,392	2,421	2,450	2,480
90	2,480	2,509	2,538	2,568	2,597	2,626	2,656	2,685	2,715	2,744	2,774
100	2,774	2,804	2,833	2,863	2,893	2,923	2,953	2,983	3,012	3,042	3,072
110	3,072	3,102	3,133	3,163	3,193	3,223	3,253		3,314		3,374
	- , - · -	- , -	-,	-,	.,	-,	- , •	- ,	- ,	- ,	- ,

Nicrosil-Nisil (NiCrSi-NiSi) "N"

	0	1	2	3	4	5	6	7	8	9	10
120	3,374	3,405	3,435	3,466	3,496	3,527	3,557	3,588	3,619	3,649	3,680
130	3,680	3,711	3,742	3,772	3,803	3,834	3,865	3,896	3,927	3,958	3,989
140	3,989	4,020	4,051	4,083	4,114	4,145	4,176	4,208	4,239	4,270	4,302
150	4,302	4,333	4,365	4,396	4,428	4,459	4,491	4,523	4,554	4,586	4,618
160	4,618	4,650	4,681	4,713	4,745	4,777	4,809	4,841	4,873	4,905	4,937
170	4,937	4,969	5,001	5,033	5,066	5,098	5,130	5,162	5,195	5,227	5,259
180	5,259	5,292	5,324	5,357	5,389	5,422	5,454	5,487	5,520	5,552	5,585
190	5,585	5,618	5,650	5,683	5,716	5,749	5,782	5,815	5,847	5,880	5,913
200	5,913	5,946	5,979	6,013	6,046	6,079	6,112	6,145	6,178	6,211	6,245
210	6,245	6,278	6,311	6,345	6,378	6,411	6,445	6,478	6,512	6,545	6,579
220	6,579	6,612	6,646	6,680	6,713	6,747	6,781	6,814	6,848	6,882	6,916
230	6,916	6,949	6,983	7,017	7,051	7,085	7,119	7,153	7,187	7,221	7,255
240	7,255	7,289	7,323	7,357	7,392	7,426	7,460	7,494	7,528	7,563	7,597
250	7,597	7,631	7,666	7,700	7,734	7,769	7,803	7,838	7,872	7,907	7,941
260	7,941	7,976	8,010	8,045	8,080	8,114	8,149	8,184	8,218	8,253	8,288
270	8,288	8,323	8,358	8,392	8,427	8,462	8,497	8,532	8,567	8,602	8,637
280	8,637	8,672	8,707	8,742	8,777	8,812	8,847	8,882	8,918	8,953	8,988
290	8,988	9,023	9,058	9,094	9,129	9,164	9,200	9,235	9,270	9,306	9,341
300	9,341	9,377	9,412	9,448	9,483	9,519	9,554	9,590	9,625	9,661	9,696
310	9,696	9,732	9,768	9,803	9,839	9,875	9,910	9,946	9,982	10,018	10,054
320	10,054	10,089	10,125	10,161	10,197	10,233	10,269	10,305	10,341	10,377	10,413
330	10,413	10,449	10,485	10,521	10,557	10,593	10,629	10,665	10,701	10,737	10,774
340	10,774	10,810	10,846	10,882	10,918	10,955	10,991	11,027	11,064	11,100	11,136
350	11,136	11,173	11,209	11,245	11,282	11,318	11,355	11,391	11,428	11,464	11,501
360	11,501	11,537	11,574	11,610	11,647	11,683	11,720	11,757	11,793	11,830	11,867
370	11,867	11,903	11,940	11,977	12,013	12,050	12,087	12,124	12,160	12,197	12,234
380	12,234	12,271	12,308	12,345	12,382	12,418	12,455	12,492	12,529	12,566	12,603
390	12,603	12,640	12,677	12,714	12,751	12,788	12,825	12,862	12,899	12,937	12,974
400	12,974	13,011	13,048	13,085	13,122	13,159	13,197	13,234	13,271	13,308	13,346
410	13,346	13,383	13,420	13,457	13,495	13,532	13,569	13,607	13,644	13,682	13,719
420	13,719	13,756	13,794	13,831	13,869	13,906	13,944	13,981	14,019	14,056	14,094
430	14,094	14,131	14,169	14,206	14,244	14,281	14,319	14,356	14,394	14,432	14,469
440	14,469	14,507	14,545	14,582	14,620	14,658	14,695	14,733	14,771	14,809	14,846
450	14,846	14,884	14,922	14,960	14,998	15,035	15,073	15,111	15,149	15,187	15,225
460	15,225	15,262	15,300	15,338	15,376	15,414	15,452	15,490	15,528	15,566	15,604
470	15,604	15,642	15,680	15,718	15,756	15,794	15,832	15,870	15,908	15,946	15,984
480	15,984	16,022	16,060	16,099	16,137	16,175	16,213	16,251	16,289	16,327	16,366
490	16,366	16,404	16,442	16,480	16,518	16,557	16,595	16,633	16,671	16,710	16,748
500	16,748	16,786	16,824	16,863	16,901	16,939	16,978	17,016	17,054	17,093	17,131

Nicrosil-Nisil (NiCrSi-NiSi) "N"

	0	1	2	3	4	5	6	7	8	9	10
510	17,131	17,169	17,208	17,246	17,285	17,323	17,361	17,400	17,438	17,477	17,515
520	17,515	17,554	17,592	17,630	17,669	17,707	17,746	17,784	17,823	17,861	17,900
530	17,900	17,938	17,977	18,016	18,054	18,093	18,131	18,170	18,208	18,247	18,286
540	18,286	18,324	18,363	18,401	18,440	18,479	18,517	18,556	18,595	18,633	18,672
550	18,672	18,711	18,749	18,788	18,827	18,865	18,904	18,943	18,982	19,020	19,059
560	19,059	19,098	19,136	19,175	19,214	19,253	19,292	19,330	19,369	19,408	19,447
570	19,447	19,485	19,524	19,563	19,602	19,641	19,680	19,718	19,757	19,796	19,835
580	19,835	19,874	19,913	19,952	19,990	20,029	20,068	20,107	20,146	20,185	20,224
590	20,224	20,263	20,302	20,341	20,379	20,418	20,457	20,496	20,535	20,574	20,613
600	20,613	20,652	20,691	20,730	20,769	20,808	20,847	20,886	20,925	20,964	21,003
610	21,003	21,042	21,081	21,120	21,159	21,198	21,237	21,276	21,315	21,354	21,393
620	21,393	21,432	21,471	21,510	21,549	21,588	21,628	21,667	21,706	21,745	21,784
630	21,784	21,823	21,862	21,901	21,940	21,979	22,018	22,058	22,097	22,136	22,175
640	22,175	22,214	22,253	22,292	22,331	22,370	22,410	22,449	22,488	22,527	22,566
650	22,566	22,605	22,644	22,684	22,723	22,762	22,801	22,840	22,879	22,919	22,958
660	22,958	22,997	23,036	23,075	23,115	23,154	23,193	23,232	23,271	23,311	23,350
670	23,350	23,389	23,428	23,467	23,507	23,546	23,585	23,624	23,663	23,703	23,742
680	23,742	23,781	23,820	23,860	23,899	23,938	23,977	24,016	24,056	24,095	24,134
690	24,134	24,173	24,213	24,252	24,291	24,330	24,370	24,409	24,448	24,487	24,527
700	24,527	24,566	24,605	24,644	24,684	24,723	24,762	24,801	24,841	24,880	24,919
710	24,919	24,959	24,998	25,037	25,076	25,116	25,155	25,194	25,233	25,273	25,312
720	25,312	25,351	25,391	25,430	25,469	25,508	25,548	25,587	25,626	25,666	25,705
730	25,705	25,744	25,783	25,823	25,862	25,901	25,941	25,980	26,019	26,058	26,098
740	26,098	26,137	26,176	26,216	26,255	26,294	26,333	26,373	26,412	26,451	26,491
750	26,491	26,530	26,569	26,608	26,648	26,687	26,726	26,766	26,805	26,844	26,883
760	26,883	26,923	26,962	27,001	27,041	27,080	27,119	27,158	27,198	27,237	27,276
770	27,276	27,316	27,355	27,394	27,433	27,473	27,512	27,551	27,591	27,630	27,669
780	27,669	27,708	27,748	27,787	27,826	27,866		27,944	27,983	28,023	28,062
790	28,062	28,101	28,140	28,180	28,219	28,258	28,297	28,337	28,376	28,415	28,455
800	28,455	28,494	28,533	28,572	28,612	28,651	28,690	28,729	28,769	28,808	28,847
810	28,847	28,886	28,926	28,965	29,004	29,043	29,083	29,122	29,161	29,200	29,239
820	29,239	29,279	29,318	29,357	29,396	29,436	29,475	29,514	29,553	29,592	29,632
830	29,632	29,671	29,710	29,749	29,789	29,828	29,867	29,906	29,945	29,985	30,024
840	30,024	30,063	30,102	30,141	30,181	30,220	30,259	30,298	30,337	30,376	30,416
850	30,416	30,455	30,494	30,533	30,572	30,611	30,651	30,690	30,729	30,768	30,807
860	30,807	30,846	30,886	30,925	30,964	31,003	31,042	31,081	31,120	31,160	31,199
870	31,199	31,238	31,277	31,316	31,355	31,394	31,433	31,473	31,512	31,551	31,590
880	31,590	31,629	31,668	31,707	31,746	31,785	31,824	31,863	31,903	31,942	31,981
890	31,981	32,020	32,059	32,098	32,137	32,176	32,215	32,254	32,293	32,332	32,371

Nicrosil-Nisil (NiCrSi-NiSi) "N"

	0	1	2	3	4	5	6	7	8	9	10
900	32,371	32,410	32,449	32,488	32,527	32,566	32,605	32,644	32,683	32,722	32,761
910	32,761	32,800	32,839	32,878	32,917	32,956	32,995	33,034	33,073	33,112	33,151
920	33,151	33,190	33,229	33,268	33,307	33,346	33,385	33,424	33,463	33,502	33,541
930	33,541	33,580	33,619	33,658	33,697	33,736	33,774	33,813	33,852	33,891	33,930
940	33,930	33,969	34,008	34,047	34,086	34,124	34,163	34,202	34,241	34,280	34,319
950	34,319	34,358	34,396	34,435	34,474	34,513	34,552	34,591	34,629	34,668	34,707
960	34,707	34,746	34,785	34,823	34,862	34,901	34,940	34,979	35,017	35,056	35,095
970	35,095	35,134	35,172	35,211	35,250	35,289	35,327	35,366	35,405	35,444	35,482
980	35,482	35,521	35,560	35,598	35,637	35,676	35,714	35,753	35,792	35,831	35,869
990	35,869	35,908	35,946	35,985	36,024	36,062	36,101	36,140	36,178	36,217	36,256
1000	36,256	36,294	36,333	36,371	36,410	36,449	36,487	36,526	36,564	36,603	36,641
1010	36,641	36,680	36,718	36,757	36,796	36,834	36,873	36,911	36,950	36,988	37,027
1020	37,027	37,065	37,104	37,142	37,181	37,219	37,258	37,296	37,334	37,373	37,411
1030	37,411	37,450	37,488	37,527	37,565	37,603	37,642	37,680	37,719	37,757	37,795
1040	37,795	37,834	37,872	37,911	37,949	37,987	38,026	38,064	38,102	38,141	38,179
1050	38,179	38,217	38,256	38,294	38,332	38,370	38,409	38,447	38,485	38,524	38,562
1060	38,562	38,600	38,638	38,677	38,715	38,753	38,791	38,829	38,868	38,906	38,944
1070	38,944	38,982	39,020	39,059	39,097	39,135	39,173	39,211	39,249	39,287	39,326
1080	39,326	39,364	39,402	39,440	39,478	39,516	39,554	39,592	39,630	39,668	39,706
1090	39,706	39,744	39,783	39,821	39,859	39,897	39,935	39,973	40,011	40,049	40,087
1100	40,087	40,125	40,163	40,201	40,238	40,276	40,314	40,352	40,390	40,428	40,466
1110	40,466	40,504	40,542	40,580	40,618	40,655	40,693	40,731	40,769	40,807	40,845
1120	40,845	40,883	40,920	40,958	40,996	41,034	41,072	41,109	41,147	41,185	41,223
1130	41,223	41,260	41,298	41,336	41,374	41,411	41,449	41,487	41,525	41,562	41,600
1140	41,600	41,638	41,675	41,713	41,751	41,788	41,826	41,864	41,901	41,939	41,976
1150	41,976	42,014	42,052	42,089	42,127	42,164	42,202	42,239	42,277	42,314	42,352
1160	42,352	42,390	42,427	42,465	42,502	42,540	42,577	42,614	42,652	42,689	42,727
1170	42,727	42,764	42,802	42,839	42,877	42,914	42,951	42,989	43,026	43,064	43,101
1180	43,101	43,138	43,176	43,213	43,250	43,288	43,325	43,362	43,399	43,437	43,474
1190	43,474	43,511	43,549	43,586	43,623	43,660	43,698	43,735	43,772	43,809	43,846
1200	43,846	43,884	43,921	43,958	43,995	44,032	44,069	44,106	44,144	44,181	44,218
1210	44,218	44,255	44,292	44,329	44,366	44,403	44,440	44,477	44,514	44,551	44,588
1220	44,588	44,625	44,662	44,699	44,736	44,773	44,810	44,847	44,884	44,921	44,958
1230	44,958	44,995	45,032	45,069	45,105	45,142	45,179	45,216	45,253	45,290	45,326
1240	45,326	45,363	45,400	45,437	45,474	45,510	45,547	45,584	45,621	45,657	45,694
1250	45,694	45,731	45,767	45,804	45,841	45,877	45,914	45,951	45,987	46,024	46,060
1260	46,060	46,097	46,133	46,170	46,207	46,243	46,280	46,316	46,353	46,389	46,425
1270	46,425	46,462	46,498	46,535	46,571	46,608	46,644	46,680	46,717	46,753	46,789
1280	46,789	46,826	46,862	46,898	46,935	46,971	47,007	47,043	47,079	47,116	47,152
1290	47,152	47,188	47,224	47,260	47,296	47,333	47,369	47,405	47,441	47,477	47,513

11.3.8 PlatinRhodium-Platin (Pt10Rh-Pt) "S"

	•							,			
	0	1	2	3	4	5	6	7	8	9	10
-50	-0,236	-0,232	-0,228	-0,224	-0,219	-0,215	-0,211	-0,207	-0,203	-0,199	-0,194
-40	-0,194	-0,190	-0,186	-0,181	-0,177	-0,173	-0,168	-0,164	-0,159	-0,155	-0,150
-30	-0,150	-0,146	-0,141	-0,136	-0,132	-0,127	-0,122	-0,117	-0,113	-0,108	-0,103
-20	-0,103	-0,098	-0,093	-0,088	-0,083	-0,078	-0,073	-0,068	-0,063	-0,058	-0,053
-10	-0,053	-0,048	-0,042	-0,037	-0,032	-0,027	-0,021	-0,016	-0,011	-0,005	0,000
0	0,000	0,005	0,011	0,016	0,022	0,027	0,033	0,038	0,044	0,050	0,055
10	0,055	0,061	0,067	0,072	0,078	0,084	0,090	0,095	0,101	0,107	0,113
20	0,113	0,119	0,125	0,131	0,137	0,143	0,149	0,155	0,161	0,167	0,173
30	0,173	0,179	0,185	0,191	0,197	0,204	0,210	0,216	0,222	0,229	0,235
40	0,235	0,241	0,248	0,254	0,260	0,267	0,273	0,280	0,286	0,292	0,299
50	0,299	0,305	0,312	0,319	0,325	0,332	0,338	0,345	0,352	0,358	0,365
60	0,365	0,372	0,378	0,385	0,392	0,399	0,405	0,412	0,419	0,426	0,433
70	0,433	0,440	0,446	0,453	0,460	0,467	0,474	0,481	0,488	0,495	0,502
80	0,502	0,509	0,516	0,523	0,530	0,538	0,545	0,552	0,559	0,566	0,573
90	0,573	0,580	0,588	0,595	0,602	0,609	0,617	0,624	0,631	0,639	0,646
100	0,646	0,653	0,661	0,668	0,675	0,683	0,690	0,698	0,705	0,713	0,720
110	0,720	0,727	0,735	0,743	0,750	0,758	0,765	0,773	0,780	0,788	0,795
120	0,795	0,803	0,811	0,818	0,826	0,834	0,841	0,849	0,857	0,865	0,872
130	0,872	0,880	0,888	0,896	0,903	0,911	0,919	0,927	0,935	0,942	0,950
140	0,950	0,958	0,966	0,974	0,982	0,990	0,998	1,006	1,013	1,021	1,029
150	1,029	1,037	1,045	1,053	1,061	1,069	1,077	1,085	1,094	1,102	1,110
160	1,110	1,118	1,126	1,134	1,142	1,150	1,158	1,167	1,175	1,183	1,191
170	1,191	1,199	1,207	1,216	1,224	1,232	1,240	1,249	1,257	1,265	1,273
180	1,273	1,282	1,290	1,298	1,307	1,315	1,323	1,332	1,340	1,348	1,357
190	1,357	1,365	1,373	1,382	1,390	1,399	1,407	1,415	1,424	1,432	1,441
200	1,441	1,449	1,458	1,466	1,475	1,483	1,492	1,500	1,509	1,517	1,526
210	1,526	1,534	1,543	1,551	1,560	1,569	1,577	1,586	1,594	1,603	1,612
220	1,612	1,620	1,629	1,638	1,646	1,655	1,663	1,672	1,681	1,690	1,698
230	1,698	1,707	1,716	1,724	1,733	1,742	1,751	1,759	1,768	1,777	1,786
240	1,786	1,794	1,803	1,812	1,821	1,829	1,838	1,847	1,856	1,865	1,874
250	1,874	1,882	1,891	1,900	1,909	1,918	1,927	1,936	1,944	1,953	1,962
260	1,962	1,971	1,980	1,989	1,998	2,007	2,016	2,025	2,034	2,043	2,052
270	2,052	2,061	2,070	2,078	2,087	2,096	2,105	2,114	2,123	2,132	2,141
280	2,141	2,151	2,160	2,169	2,178	2,187	2,196	2,205	2,214	2,223	2,232
290	2,232	2,241	2,250	2,259	2,268	2,277	2,287	2,296	2,305	2,314	2,323
300	2,323	2,332	2,341	2,350	2,360	2,369	2,378	2,387	2,396	2,405	2,415
310	2,415	2,424	2,433	2,442	2,451	2,461	2,470	2,479	2,488	2,497	2,507
320	2,507	2,516	2,525	2,534	2,544	2,553	2,562	2,571	2,581	2,590	2,599
330	2,599	2,609	2,618	2,627	2,636	2,646	2,655	2,664	2,674	2,683	2,692
										l l	

PlatinRhodium-Platin (Pt10Rh-Pt) "S"

	0	1	2	3	4	5	6	7	8	9	10
340	2,692	2,702	2,711	2,720	2,730	2,739	2,748	2,758	2,767	2,776	2,786
350	2,786	2,795	2,805	2,814	2,823	2,833	2,842	2,851	2,861	2,870	2,880
360	2,880	2,889	2,899	2,908	2,917	2,927	2,936	2,946	2,955	2,965	2,974
370	2,974	2,983	2,993	3,002	3,012	3,021	3,031	3,040	3,050	3,059	3,069
380	3,069	3,078	3,088	3,097	3,107	3,116	3,126	3,135	3,145	3,154	3,164
390	3,164	3,173	3,183	3,192	3,202	3,212	3,221	3,231	3,240	3,250	3,259
400	3,259	3,269	3,279	3,288	3,298	3,307	3,317	3,326	3,336	3,346	3,355
410	3,355	3,365	3,374	3,384	3,394	3,403	3,413	3,423	3,432	3,442	3,451
420	3,451	3,461	3,471	3,480	3,490	3,500	3,509	3,519	3,529	3,538	3,548
430	3,548	3,558	3,567	3,577	3,587	3,596	3,606	3,616	3,626	3,635	3,645
440	3,645	3,655	3,664	3,674	3,684	3,694	3,703	3,713	3,723	3,732	3,742
450	3,742	3,752	3,762	3,771	3,781	3,791	3,801	3,810	3,820	3,830	3,840
460	3,840	3,850	3,859	3,869	3,879	3,889	3,898	3,908	3,918	3,928	3,938
470	3,938	3,947	3,957	3,967	3,977	3,987	3,997	4,006	4,016	4,026	4,036
480	4,036	4,046	4,056	4,065	4,075	4,085	4,095	4,105	4,115	4,125	4,134
490	4,134	4,144	4,154	4,164	4,174	4,184	4,194	4,204	4,213	4,223	4,233
500	4,233	4,243	4,253	4,263	4,273	4,283	4,293	4,303	4,313	4,323	4,332
510	4,332	4,342	4,352	4,362	4,372	4,382	4,392	4,402	4,412	4,422	4,432
520	4,432	4,442	4,452	4,462	4,472	4,482	4,492	4,502	4,512	4,522	4,532
530	4,532	4,542	4,552	4,562	4,572	4,582	4,592	4,602	4,612	4,622	4,632
540	4,632	4,642	4,652	4,662	4,672	4,682	4,692	4,702	4,712	4,722	4,732
550	4,732	4,742	4,752	4,762	4,772	4,782	4,793	4,803	4,813	4,823	4,833
560	4,833	4,843	4,853	4,863	4,873	4,883	4,893	4,904	4,914	4,924	4,934
570	4,934	4,944	4,954	4,964	4,974	4,984	4,995	5,005	5,015	5,025	5,035
580	5,035	5,045	5,055	5,066	5,076	5,086	5,096	5,106	5,116	5,127	5,137
590	5,137	5,147	5,157	5,167	5,178	5,188	5,198		5,218	5,228	5,239
600	5,239	5,249	5,259	5,269	5,280	5,290	5,300	5,310	5,320	5,331	5,341
610	5,341	5,351	5,361	5,372	5,382	5,392	5,402	5,413	5,423	5,433	5,443
620	5,443	5,454	5,464	5,474	5,485	5,495	5,505		5,526	5,536	5,546
630	5,546	5,557	5,567	5,577	5,588	5,598	5,608		5,629	5,639	5,649
640	5,649	5,660	5,670	5,680	5,691	5,701	5,712		5,732	5,743	5,753
650	5,753	5,763	5,774	5,784	5,794	5,805	5,815		5,836	5,846	5,857
660	5,857	5,867	5,878	5,888	5,898	5,909	5,919		5,940	5,950	5,961
670	5,961	5,971	5,982	5,992	6,003	6,013	6,024		6,044	6,055	6,065
680	6,065	6,076	6,086	6,097	6,107	6,118	6,128		6,149	6,160	6,170
690	6,170	6,181	6,191	6,202	6,212	6,223	6,233		6,254	6,265	6,275
700	6,275	6,286	6,296	6,307	6,317	6,328	6,338		6,360	6,370	6,381
710	6,381	6,391	6,402	6,412	6,423	6,434	6,444		6,465	6,476	6,486
720	6,486	6,497	6,508	6,518	6,529	6,539	6,550	6,561	6,571	6,582	6,593

PlatinRhodium-Platin (Pt10Rh-Pt) "S"

	0	1	2	3	4	5	6	7	8	9	10
730	6,593	6,603	6,614	6,624	6,635	6,646	6,656	6,667	6,678	6,688	6,699
740	6,699	6,710	6,720	6,731	6,742	6,752	6,763	6,774	6,784	6,795	6,806
750	6,806	6,817	6,827	6,838	6,849	6,859	6,870	6,881	6,892	6,902	6,913
760	6,913	6,924	6,934	6,945	6,956	6,967	6,977	6,988	6,999	7,010	7,020
770	7,020	7,031	7,042	7,053	7,064	7,074	7,085	7,096	7,107	7,117	7,128
780	7,128	7,139	7,150	7,161	7,172	7,182	7,193	7,204	7,215	7,226	7,236
790	7,236	7,247	7,258	7,269	7,280	7,291	7,302	7,312	7,323	7,334	7,345
800	7,345	7,356	7,367	7,378	7,388	7,399	7,410	7,421	7,432	7,443	7,454
810	7,454	7,465	7,476	7,487	7,497	7,508	7,519	7,530	7,541	7,552	7,563
820	7,563	7,574	7,585	7,596	7,607	7,618	7,629	7,640	7,651	7,662	7,673
830	7,673	7,684	7,695	7,706	7,717	7,728	7,739	7,750	7,761	7,772	7,783
840	7,783	7,794	7,805	7,816	7,827	7,838	7,849	7,860	7,871	7,882	7,893
850	7,893	7,904	7,915	7,926	7,937	7,948	7,959	7,970	7,981	7,992	8,003
860	8,003	8,014	8,026	8,037	8,048	8,059	8,070	8,081	8,092	8,103	8,114
870	8,114	8,125	8,137	8,148	8,159	8,170	8,181	8,192	8,203	8,214	8,226
880	8,226	8,237	8,248	8,259	8,270	8,281	8,293	8,304	8,315	8,326	8,337
890	8,337	8,348	8,360	8,371	8,382	8,393	8,404	8,416	8,427	8,438	8,449
900	8,449	8,460	8,472	8,483	8,494	8,505	8,517	8,528	8,539	8,550	8,562
910	8,562	8,573	8,584	8,595	8,607	8,618	8,629	8,640	8,652	8,663	8,674
920	8,674	8,685	8,697	8,708	8,719	8,731	8,742	8,753	8,765	8,776	8,787
930	8,787	8,798	8,810	8,821	8,832	8,844	8,855	8,866	8,878	8,889	8,900
940	8,900	8,912	8,923	8,935	8,946	8,957	8,969	8,980	8,991	9,003	9,014
950	9,014	9,025	9,037	9,048	9,060	9,071	9,082	9,094	9,105	9,117	9,128
960	9,128	9,139	9,151	9,162	9,174	9,185	9,197	9,208	9,219	9,231	9,242
970	9,242	9,254	9,265	9,277	9,288	9,300	9,311	9,323	9,334	9,345	9,357
980	9,357	9,368	9,380	9,391	9,403	9,414	9,426	9,437	9,449	9,460	9,472
990	9,472	9,483	9,495	9,506	9,518	9,529	9,541	9,552	9,564	9,576	9,587
1000	9,587	9,599	9,610	9,622	9,633	9,645	9,656	9,668	9,680	9,691	9,703
1010	9,703	9,714	9,726	9,737	9,749	9,761	9,772	9,784	9,795	9,807	9,819
1020	9,819	9,830	9,842	9,853	9,865	9,877	9,888	9,900	9,911	9,923	9,935
1030	9,935	9,946	9,958	9,970	9,981	9,993	10,005	10,016	10,028	10,040	10,051
1040	10,051	10,063	10,075	10,086	10,098	10,110	10,121	10,133	10,145	10,156	10,168
1050	10,168	10,180	10,191	10,203	10,215	10,227	10,238	10,250	10,262	10,273	10,285
1060	10,285	10,297	10,309	10,320	10,332	10,344	10,356	10,367	10,379	10,391	10,403
1070	10,403	10,414	10,426	10,438	10,450	10,461	10,473	10,485	10,497	10,509	10,520
1080	10,520	10,532	10,544	10,556	10,567	10,579	10,591	10,603	10,615	10,626	10,638
1090	10,638	10,650	10,662	10,674	10,686	10,697	10,709	10,721	10,733	10,745	10,757
1100	10,757	10,768	10,780	10,792	10,804	10,816	10,828	10,839	10,851	10,863	10,875
1110	10,875	10,887	10,899	10,911	10,922	10,934	10,946	10,958	10,970	10,982	10,994

PlatinRhodium-Platin (Pt10Rh-Pt) "S"

	0	1	2	3	4	5	6	7	8	9	10
1120	10,994	11,006	11,017	11,029	11,041	11,053	11,065	11,077	11,089	11,101	11,113
1130	11,113	11,125	11,136	11,148	11,160	11,172	11,184	11,196	11,208	11,220	11,232
1140	11,232	11,244	11,256	11,268	11,280	11,291	11,303	11,315	11,327	11,339	11,351
1150	11,351	11,363	11,375	11,387	11,399	11,411	11,423	11,435	11,447	11,459	11,471
1160	11,471	11,483	11,495	11,507	11,519	11,531	11,542	11,554	11,566	11,578	11,590
1170	11,590	11,602	11,614	11,626	11,638	11,650	11,662	11,674	11,686	11,698	11,710
1180	11,710	11,722	11,734	11,746	11,758	11,770	11,782	11,794	11,806	11,818	11,830
1190	11,830	11,842	11,854	11,866	11,878	11,890	11,902	11,914	11,926	11,939	11,951
1200	11,951	11,963	11,975	11,987	11,999	12,011	12,023	12,035	12,047	12,059	12,071
1210	12,071	12,083	12,095	12,107	12,119	12,131	12,143	12,155	12,167	12,179	12,191
1220	12,191	12,203	12,216	12,228	12,240	12,252	12,264	12,276	12,288	12,300	12,312
1230	12,312	12,324	12,336	12,348	12,360	12,372	12,384	12,397	12,409	12,421	12,433
1240	12,433	12,445	12,457	12,469	12,481	12,493	12,505	12,517	12,529	12,542	12,554
1250	12,554	12,566	12,578	12,590	12,602	12,614	12,626	12,638	12,650	12,662	12,675
1260	12,675	12,687	12,699	12,711	12,723	12,735	12,747	12,759	12,771	12,783	12,796
1270	12,796	12,808	12,820	12,832	12,844	12,856	12,868	12,880	12,892	12,905	12,917
1280	12,917	12,929	12,941	12,953	12,965	12,977	12,989	13,001	13,014	13,026	13,038
1290	13,038	13,050	13,062	13,074	13,086	13,098	13,111	13,123	13,135	13,147	13,159
1300	13,159	13,171	13,183	13,195	13,208	13,220	13,232	13,244	13,256	13,268	13,280
1310	13,280	13,292	13,305	13,317	13,329	13,341	13,353	13,365	13,377	13,390	13,402
1320	13,402	13,414	13,426	13,438	13,450	13,462	13,474	13,487	13,499	13,511	13,523
1330	13,523	13,535	13,547	13,559	13,572	13,584	13,596	13,608	13,620	13,632	13,644
1340	13,644	13,657	13,669	13,681	13,693	13,705	13,717	13,729	13,742	13,754	13,766
1350	13,766	13,778	13,790	13,802	13,814	13,826	13,839	13,851	13,863	13,875	13,887
1360	13,887	13,899	13,911	13,924	13,936	13,948	13,960	13,972	13,984	13,996	14,009
1370	14,009	14,021	14,033	14,045	14,057	14,069	14,081	14,094	14,106	14,118	14,130
1380	14,130	14,142	14,154	14,166		14,191	14,203	14,215	14,227	14,239	14,251
1390	14,251	14,263	14,276	14,288	14,300	14,312	14,324	14,336	14,348	14,360	14,373
1400	14,373	14,385	14,397	14,409	14,421	14,433	14,445	14,457	14,470	14,482	14,494
1410	14,494	14,506	14,518	14,530	14,542	14,554	14,567	14,579	14,591	14,603	14,615
1420	14,615	14,627	14,639	14,651	14,664	14,676	14,688	14,700	14,712	14,724	14,736
1430	14,736	14,748	14,760	14,773	14,785	14,797	14,809	14,821	14,833	14,845	14,857
1440	14,857	14,869	14,881	14,894	14,906	14,918	14,930	14,942	14,954	14,966	14,978
1450	14,978	14,990	15,002	15,015	15,027	15,039	15,051	15,063	15,075	15,087	15,099
1460	15,099	15,111	15,123	15,135	15,148	15,160	15,172	15,184	15,196	15,208	15,220
1470	15,220	15,232	15,244	15,256	15,268	15,280	15,292	15,304	15,317	15,329	15,341
1480	15,341	15,353	15,365	15,377	15,389	15,401	15,413	15,425	15,437	15,449	15,461
1490	15,461	15,473	15,485	15,497	15,509	15,521	15,534	15,546	15,558	15,570	15,582
1500	15,582	15,594	15,606	15,618	15,630	15,642	15,654	15,666	15,678	15,690	15,702

PlatinRhodium-Platin (Pt10Rh-Pt) "S"

	0	1	2	3	4	5	6	7	8	9	10
1510	15,702	15,714	15,726	15,738	15,750	15,762	15,774	15,786	15,798	15,810	15,822
1520	15,822	15,834	15,846	15,858	15,870	15,882	15,894	15,906	15,918	15,930	15,942
1530	15,942	15,954	15,966	15,978	15,990	16,002	16,014	16,026	16,038	16,050	16,062
1540	16,062	16,074	16,086	16,098	16,110	16,122	16,134	16,146	16,158	16,170	16,182
1550	16,182	16,194	16,205	16,217	16,229	16,241	16,253	16,265	16,277	16,289	16,301
1560	16,301	16,313	16,325	16,337	16,349	16,361	16,373	16,385	16,396	16,408	16,420
1570	16,420	16,432	16,444	16,456	16,468	16,480	16,492	16,504	16,516	16,527	16,539
1580	16,539	16,551	16,563	16,575	16,587	16,599	16,611	16,623	16,634	16,646	16,658
1590	16,658	16,670	16,682	16,694	16,706	16,718	16,729	16,741	16,753	16,765	16,777
1600	16,777	16,789	16,801	16,812	16,824	16,836	16,848	16,860	16,872	16,883	16,895
1610	16,895	16,907	16,919	16,931	16,943	16,954	16,966	16,978	16,990	17,002	17,013
1620	17,013	17,025	17,037	17,049	17,061	17,072	17,084	17,096	17,108	17,120	17,131
1630	17,131	17,143	17,155	17,167	17,178	17,190	17,202	17,214	17,225	17,237	17,249
1640	17,249	17,261	17,272	17,284	17,296	17,308	17,319	17,331	17,343	17,355	17,366
1650	17,366	17,378	17,390	17,401	17,413	17,425	17,437	17,448	17,460	17,472	17,483
1660	17,483	17,495	17,507	17,518	17,530	17,542	17,553	17,565	17,577	17,588	17,600
1670	17,600	17,612	17,623	17,635	17,647	17,658	17,670	17,682	17,693	17,705	17,717
1680	17,717	17,728	17,740	17,751	17,763	17,775	17,786	17,798	17,809	17,821	17,832
1690	17,832	17,844	17,855	17,867	17,878	17,890	17,901	17,913	17,924	17,936	17,947
1700	17,947	17,959	17,970	17,982	17,993	18,004	18,016	18,027	18,039	18,050	18,061
1710	18,061	18,073	18,084	18,095	18,107	18,118	18,129	18,140	18,152	18,163	18,174
1720	18,174	18,185	18,196	18,208	18,219	18,230	18,241	18,252	18,263	18,274	18,285
1730	18,285	18,297	18,308	18,319	18,330	18,341	18,352	18,362	18,373	18,384	18,395
1740	18,395	18,406	18,417	18,428	18,439	18,449	18,460	18,471	18,482	18,493	18,503
1750	18,503	18,514	18,525	18,535	18,546	18,557	18,567	18,578	18,588	18,599	18,609
1760	18,609	18,620	18,630	18,641	18,651	18,661	18,672	18,682	18,693		

11.3.9 PlatinRhodium-Platin (Pt13Rh-Pt) "R"

	0	1	2	3	4	5	6	7	8	9	10
-50	-0,226	-0,223	-0,219	-0,215	-0,211	-0,208	-0,204	-0,200	-0,196	-0,192	-0,188
-40	-0,188	-0,184	-0,180	-0,175	-0,171	-0,167	-0,163	-0,158	-0,154	-0,150	-0,145
-30	-0,145	-0,141	-0,137	-0,132	-0,128	-0,123	-0,119	-0,114	-0,109	-0,105	-0,100
-20	-0,100	-0,095	-0,091	-0,086	-0,081	-0,076	-0,071	-0,066	-0,061	-0,056	-0,051
-10	-0,051	-0,046	-0,041	-0,036	-0,031	-0,026	-0,021	-0,016	-0,011	-0,005	0,000
0	0,000	0,005	0,011	0,016	0,021	0,027	0,032	0,038	0,043	0,049	0,054
10	0,054	0,060	0,065	0,071	0,077	0,082	0,088	0,094	0,100	0,105	0,111
20	0,111	0,117	0,123	0,129	0,135	0,141	0,147	0,153	0,159	0,165	0,171
30	0,171	0,177	0,183	0,189	0,195	0,201	0,207	0,214	0,220	0,226	0,232
40	0,232	0,239	0,245	0,251	0,258	0,264	0,271	0,277	0,284	0,290	0,296
50	0,296	0,303	0,310	0,316	0,323	0,329	0,336	0,343	0,349	0,356	0,363
60	0,363	0,369	0,376	0,383	0,390	0,397	0,403	0,410	0,417	0,424	0,431
70	0,431	0,438	0,445	0,452	0,459	0,466	0,473	0,480	0,487	0,494	0,501
80	0,501	0,508	0,516	0,523	0,530	0,537	0,544	0,552	0,559	0,566	0,573
90	0,573	0,581	0,588	0,595	0,603	0,610	0,618	0,625	0,632	0,640	0,647
100	0,647	0,655	0,662	0,670	0,677	0,685	0,693	0,700	0,708	0,715	0,723
110	0,723	0,731	0,738	0,746	0,754	0,761	0,769	0,777	0,785	0,792	0,800
120	0,800	0,808	0,816	0,824	0,832	0,839	0,847	0,855	0,863	0,871	0,879
130	0,879	0,887	0,895	0,903	0,911	0,919	0,927	0,935	0,943	0,951	0,959
140	0,959	0,967	0,976	0,984	0,992	1,000	1,008	1,016	1,025	1,033	1,041
150	1,041	1,049	1,058	1,066	1,074	1,082	1,091	1,099	1,107	1,116	1,124
160	1,124	1,132	1,141	1,149	1,158	1,166	1,175	1,183	1,191	1,200	1,208
170	1,208	1,217	1,225	1,234	1,242	1,251	1,260	1,268	1,277	1,285	1,294
180	1,294	1,303	1,311	1,320	1,329	1,337	1,346	1,355	1,363	1,372	1,381
190	1,381	1,389	1,398	1,407	1,416	1,425	1,433	1,442	1,451	1,460	1,469
200	1,469	1,477	1,486	1,495	1,504	1,513	1,522	1,531	1,540	1,549	1,558
210	1,558	1,567	1,575	1,584	1,593	1,602	1,611	1,620	1,629	1,639	1,648
220	1,648	1,657	1,666	1,675	1,684	1,693	1,702	1,711	1,720	1,729	1,739
230	1,739	1,748	1,757	1,766	1,775	1,784	1,794	1,803	1,812	1,821	1,831
240	1,831	1,840	1,849	1,858	1,868	1,877	1,886	1,895	1,905	1,914	1,923
250	1,923	1,933	1,942	1,951	1,961	1,970	1,980	1,989	1,998	2,008	2,017
260	2,017	2,027	2,036	2,046	2,055	2,064	2,074	2,083	2,093	2,102	2,112
270	2,112	2,121	2,131	2,140	2,150	2,159	2,169	2,179	2,188	2,198	2,207
280	2,207	2,217	2,226	2,236	2,246	2,255	2,265	2,275	2,284	2,294	2,304
290	2,304	2,313	2,323	2,333	2,342	2,352	2,362	2,371	2,381	2,391	2,401
300	2,401	2,410	2,420	2,430	2,440	2,449	2,459	2,469	2,479	2,488	2,498
310	2,498	2,508	2,518	2,528	2,538	2,547	2,557	2,567	2,577	2,587	2,597
320	2,597	2,607	2,617	2,626	2,636	2,646	2,656	2,666	2,676	2,686	2,696
330	2,696	2,706	2,716	2,726	2,736	2,746	2,756	2,766	2,776	2,786	2,796

PlatinRhodium-Platin (Pt13Rh-Pt) "R"

	0	1	2	3	4	5	6	7	8	9	10
340	2,796	2,806	2,816	2,826	2,836	2,846	2,856	2,866	2,876	2,886	2,896
350	2,896	2,906	2,916	2,926	2,937	2,947	2,957	2,967	2,977	2,987	2,997
360	2,997	3,007	3,018	3,028	3,038	3,048	3,058	3,068	3,079	3,089	3,099
370	3,099	3,109	3,119	3,130	3,140	3,150	3,160	3,171	3,181	3,191	3,201
380	3,201	3,212	3,222	3,232	3,242	3,253	3,263	3,273	3,284	3,294	3,304
390	3,304	3,315	3,325	3,335	3,346	3,356	3,366	3,377	3,387	3,397	3,408
400	3,408	3,418	3,428	3,439	3,449	3,460	3,470	3,480	3,491	3,501	3,512
410	3,512	3,522	3,533	3,543	3,553	3,564	3,574	3,585	3,595	3,606	3,616
420	3,616	3,627	3,637	3,648	3,658	3,669	3,679	3,690	3,700	3,711	3,721
430	3,721	3,732	3,742	3,753	3,764	3,774	3,785	3,795	3,806	3,816	3,827
440	3,827	3,838	3,848	3,859	3,869	3,880	3,891	3,901	3,912	3,922	3,933
450	3,933	3,944	3,954	3,965	3,976	3,986	3,997	4,008	4,018	4,029	4,040
460	4,040	4,050	4,061	4,072	4,083	4,093	4,104	4,115	4,125	4,136	4,147
470	4,147	4,158	4,168	4,179	4,190	4,201	4,211	4,222	4,233	4,244	4,255
480	4,255	4,265	4,276	4,287	4,298	4,309	4,319	4,330	4,341	4,352	4,363
490	4,363	4,373	4,384	4,395	4,406	4,417	4,428	4,439	4,449	4,460	4,471
500	4,471	4,482	4,493	4,504	4,515	4,526	4,537	4,548	4,558	4,569	4,580
510	4,580	4,591	4,602	4,613	4,624	4,635	4,646	4,657	4,668	4,679	4,690
520	4,690	4,701	4,712	4,723	4,734	4,745	4,756	4,767	4,778	4,789	4,800
530	4,800	4,811	4,822	4,833	4,844	4,855	4,866	4,877	4,888	4,899	4,910
540	4,910	4,922	4,933	4,944	4,955	4,966	4,977	4,988	4,999	5,010	5,021
550	5,021	5,033	5,044	5,055	5,066	5,077	5,088	5,099	5,111	5,122	5,133
560	5,133	5,144	5,155	5,166	5,178	5,189	5,200	5,211	5,222	5,234	5,245
570	5,245	5,256	5,267	5,279	5,290	5,301	5,312	5,323	5,335	5,346	5,357
580	5,357	5,369	5,380	5,391	5,402	5,414	5,425	5,436	5,448	5,459	5,470
590	5,470	5,481	5,493	5,504	5,515	5,527	5,538	5,549	5,561	5,572	5,583
600	5,583	5,595	5,606	5,618	5,629	5,640	5,652	5,663	5,674	5,686	5,697
610	5,697	5,709	5,720	5,731	5,743	5,754	5,766	5,777	5,789	5,800	5,812
620	5,812	5,823	5,834	5,846	5,857	5,869	5,880	5,892	5,903	5,915	5,926
630	5,926	5,938	5,949	5,961	5,972	5,984	5,995	6,007	6,018	6,030	6,041
640	6,041	6,053	6,065	6,076	6,088	6,099	6,111	6,122	6,134	6,146	6,157
650	6,157	6,169	6,180	6,192	6,204	6,215	6,227	6,238	6,250	6,262	6,273
660	6,273	6,285	6,297	6,308	6,320	6,332	6,343	6,355	6,367	6,378	6,390
670	6,390	6,402	6,413	6,425	6,437	6,448	6,460	6,472	6,484	6,495	6,507
680	6,507	6,519	6,531	6,542	6,554	6,566	6,578	6,589	6,601	6,613	6,625
690	6,625	6,636	6,648	6,660	6,672	6,684	6,695	6,707	6,719	6,731	6,743
700	6,743	6,755	6,766	6,778	6,790	6,802	6,814	6,826	6,838	6,849	6,861
710	6,861	6,873	6,885	6,897	6,909	6,921	6,933	6,945	6,956	6,968	6,980
720	6,980	6,992	7,004	7,016	7,028	7,040	7,052	7,064	7,076	7,088	7,100

PlatinRhodium-Platin (Pt13Rh-Pt) "R"

	0	1	2	3	4	5	6	7	8	9	10
730	7,100	7,112	7,124	7,136	7,148	7,160	7,172	7,184	7,196	7,208	7,220
740	7,220	7,232	7,244	7,256	7,268	7,280	7,292	7,304	7,316	7,328	7,340
750	7,340	7,352	7,364	7,376	7,389	7,401	7,413	7,425	7,437	7,449	7,461
760	7,461	7,473	7,485	7,498	7,510	7,522	7,534	7,546	7,558	7,570	7,583
770	7,583	7,595	7,607	7,619	7,631	7,644	7,656	7,668	7,680	7,692	7,705
780	7,705	7,717	7,729	7,741	7,753	7,766	7,778	7,790	7,802	7,815	7,827
790	7,827	7,839	7,851	7,864	7,876	7,888	7,901	7,913	7,925	7,938	7,950
800	7,950	7,962	7,974	7,987	7,999	8,011	8,024	8,036	8,048	8,061	8,073
810	8,073	8,086	8,098	8,110	8,123	8,135	8,147	8,160	8,172	8,185	8,197
820	8,197	8,209	8,222	8,234	8,247	8,259	8,272	8,284	8,296	8,309	8,321
830	8,321	8,334	8,346	8,359	8,371	8,384	8,396	8,409	8,421	8,434	8,446
840	8,446	8,459	8,471	8,484	8,496	8,509	8,521	8,534	8,546	8,559	8,571
850	8,571	8,584	8,597	8,609	8,622	8,634	8,647	8,659	8,672	8,685	8,697
860	8,697	8,710	8,722	8,735	8,748	8,760	8,773	8,785	8,798	8,811	8,823
870	8,823	8,836	8,849	8,861	8,874	8,887	8,899	8,912	8,925	8,937	8,950
880	8,950	8,963	8,975	8,988	9,001	9,014	9,026	9,039	9,052	9,065	9,077
890	9,077	9,090	9,103	9,115	9,128	9,141	9,154	9,167	9,179	9,192	9,205
900	9,205	9,218	9,230	9,243	9,256	9,269	9,282	9,294	9,307	9,320	9,333
910	9,333	9,346	9,359	9,371	9,384	9,397	9,410	9,423	9,436	9,449	9,461
920	9,461	9,474	9,487	9,500	9,513	9,526	9,539	9,552	9,565	9,578	9,590
930	9,590	9,603	9,616	9,629	9,642	9,655	9,668	9,681	9,694	9,707	9,720
940	9,720	9,733	9,746	9,759	9,772	9,785	9,798	9,811	9,824	9,837	9,850
950	9,850	9,863	9,876	9,889	9,902	9,915	9,928	9,941	9,954	9,967	9,980
960	9,980	9,993	10,006	10,019	10,032	10,046	10,059	10,072	10,085	10,098	10,111
970	10,111	10,124	10,137	10,150	10,163	10,177	10,190	10,203	10,216	10,229	10,242
980	10,242	10,255	10,268	10,282	10,295	10,308	10,321	10,334	10,347	10,361	10,374
990	10,374	10,387	10,400	10,413	10,427	10,440	10,453	10,466	10,480	10,493	10,506
1000	10,506	10,519	10,532	10,546	10,559	10,572	10,585	10,599	10,612	10,625	10,638
1010	10,638	10,652	10,665	10,678	10,692	10,705	10,718	10,731	10,745	10,758	10,771
1020	10,771	10,785	10,798	10,811	10,825	10,838	10,851	10,865	10,878	10,891	10,905
1030	10,905	10,918	10,932	10,945	10,958	10,972	10,985	10,998	11,012	11,025	11,039
1040	11,039	11,052	11,065	11,079	11,092	11,106	11,119	11,132	11,146	11,159	11,173
1050	11,173	11,186	11,200	11,213	11,227	11,240	11,253	11,267	11,280	11,294	11,307
1060	11,307	11,321	11,334	11,348	11,361	11,375	11,388	11,402	11,415	11,429	11,442
1070	11,442	11,456	11,469	11,483	11,496	11,510	11,524	11,537	11,551	11,564	11,578
1080	11,578	11,591	11,605	11,618	11,632	11,646	11,659	11,673	11,686	11,700	11,714
1090	11,714	11,727	11,741	11,754	11,768	11,782	11,795	11,809	11,822	11,836	11,850
1100	11,850	11,863	11,877	11,891	11,904	11,918	11,931	11,945	11,959	11,972	11,986
1110	11,986	12,000	12,013	12,027	12,041	12,054	12,068	12,082	12,096	12,109	12,123

PlatinRhodium-Platin (Pt13Rh-Pt) "R"

•	0	1	2	3	4	5	6	7	8	9	10
1120	12,123	12,137	12,150	12,164	12,178	12,191	12,205	12,219	12,233	12,246	12,260
1130	12,260	12,274	12,288	12,301	12,315	12,329	12,342	12,356	12,370	12,384	12,397
1140	12,397	12,411	12,425	12,439	12,453	12,466	12,480	12,494	12,508	12,521	12,535
1150	12,535	12,549	12,563	12,577	12,590	12,604	12,618	12,632	12,646	12,659	12,673
1160	12,673	12,687	12,701	12,715	12,729	12,742	12,756	12,770	12,784	12,798	12,812
1170	12,812	12,825	12,839	12,853	12,867	12,881	12,895	12,909	12,922	12,936	12,950
1180	12,950	12,964	12,978	12,992	13,006	13,019	13,033	13,047	13,061	13,075	13,089
1190	13,089	13,103	13,117	13,131	13,145	13,158	13,172	13,186	13,200	13,214	13,228
1200	13,228	13,242	13,256	13,270	13,284	13,298	13,311	13,325	13,339	13,353	13,367
1210	13,367	13,381	13,395	13,409	13,423	13,437	13,451	13,465	13,479	13,493	13,507
1220	13,507	13,521	13,535	13,549	13,563	13,577	13,590	13,604	13,618	13,632	13,646
1230	13,646	13,660	13,674	13,688	13,702	13,716	13,730	13,744	13,758	13,772	13,786
1240	13,786	13,800	13,814	13,828	13,842	13,856	13,870	13,884	13,898	13,912	13,926
1250	13,926	13,940	13,954	13,968	13,982	13,996	14,010	14,024	14,038	14,052	14,066
1260	14,066	14,081	14,095	14,109	14,123	14,137	14,151	14,165	14,179	14,193	14,207
1270	14,207	14,221	14,235	14,249	14,263	14,277	14,291	14,305	14,319	14,333	14,347
1280	14,347	14,361	14,375	14,390	14,404	14,418	14,432	14,446	14,460	14,474	14,488
1290	14,488	14,502	14,516	14,530	14,544	14,558	14,572	14,586	14,601	14,615	14,629
1300	14,629	14,643	14,657	14,671	14,685	14,699	14,713	14,727	14,741	14,755	14,770
1310	14,770	14,784	14,798	14,812	14,826	14,840	14,854	14,868	14,882	14,896	14,911
1320	14,911	14,925	14,939	14,953	14,967	14,981	14,995	15,009	15,023	15,037	15,052
1330	15,052	15,066	15,080	15,094	15,108	15,122	15,136	15,150	15,164	15,179	15,193
1340	15,193	15,207	15,221	15,235	15,249	15,263	15,277	15,291	15,306	15,320	15,334
1350	15,334	15,348	15,362	15,376	15,390	15,404	15,419	15,433	15,447	15,461	15,475
1360	15,475	15,489	15,503	15,517	15,531	15,546	15,560	15,574	15,588	15,602	15,616
1370	15,616	15,630	15,645	15,659	15,673	15,687	15,701	15,715	15,729	15,743	15,758
1380	15,758	15,772	15,786	15,800		15,828	15,842	15,856	15,871	15,885	15,899
1390	15,899	15,913	15,927	15,941	15,955	15,969	15,984	15,998	16,012	16,026	16,040
1400	16,040	16,054	16,068	16,082	16,097	16,111	16,125	16,139	16,153	16,167	16,181
1410	16,181	16,196	16,210	16,224	16,238	16,252	16,266	16,280	16,294	16,309	16,323
1420	16,323	16,337	16,351	16,365	16,379	16,393	16,407	16,422	16,436	16,450	16,464
1430	16,464	16,478	16,492	16,506	16,520	16,534	16,549	16,563	16,577	16,591	16,605
1440	16,605	16,619	16,633	16,647	16,662	16,676	16,690	16,704	16,718	16,732	16,746
1450	16,746	16,760	16,774	16,789	16,803	16,817	16,831	16,845	16,859	16,873	16,887
1460	16,887	16,901	16,915	16,930	16,944	16,958	16,972	16,986	17,000	17,014	17,028
1470	17,028	17,042	17,056	17,071	17,085	17,099	17,113	17,127	17,141	17,155	17,169
1480	17,169	17,183	17,197	17,211	17,225	17,240	17,254	17,268	17,282	17,296	17,310
1490	17,310	17,324	17,338	17,352	17,366	17,380	17,394	17,408	17,423	17,437	17,451
1500	17,451	17,465	17,479	17,493	17,507	17,521	17,535	17,549	17,563	17,577	17,591

PlatinRhodium-Platin (Pt13Rh-Pt) "R"

	0	1	2	3	4	5	6	7	8	9	10
1510	17,591	17,605	17,619	17,633	17,647	17,661	17,676	17,690	17,704	17,718	17,732
1520	17,732	17,746	17,760	17,774	17,788	17,802	17,816	17,830	17,844	17,858	17,872
1530	17,872	17,886	17,900	17,914	17,928	17,942	17,956	17,970	17,984	17,998	18,012
1540	18,012	18,026	18,040	18,054	18,068	18,082	18,096	18,110	18,124	18,138	18,152
1550	18,152	18,166	18,180	18,194	18,208	18,222	18,236	18,250	18,264	18,278	18,292
1560	18,292	18,306	18,320	18,334	18,348	18,362	18,376	18,390	18,404	18,417	18,431
1570	18,431	18,445	18,459	18,473	18,487	18,501	18,515	18,529	18,543	18,557	18,571
1580	18,571	18,585	18,599	18,613	18,627	18,640	18,654	18,668	18,682	18,696	18,710
1590	18,710	18,724	18,738	18,752	18,766	18,779	18,793	18,807	18,821	18,835	18,849
1600	18,849	18,863	18,877	18,891	18,904	18,918	18,932	18,946	18,960	18,974	18,988
1610	18,988	19,002	19,015	19,029	19,043	19,057	19,071	19,085	19,098	19,112	19,126
1620	19,126	19,140	19,154	19,168	19,181	19,195	19,209	19,223	19,237	19,250	19,264
1630	19,264	19,278	19,292	19,306	19,319	19,333	19,347	19,361	19,375	19,388	19,402
1640	19,402	19,416	19,430	19,444	19,457	19,471	19,485	19,499	19,512	19,526	19,540
1650	19,540	19,554	19,567	19,581	19,595	19,609	19,622	19,636	19,650	19,663	19,677
1660	19,677	19,691	19,705	19,718	19,732	19,746	19,759	19,773	19,787	19,800	19,814
1670	19,814	19,828	19,841	19,855	19,869	19,882	19,896	19,910	19,923	19,937	19,951
1680	19,951	19,964	19,978	19,992	20,005	20,019	20,032	20,046	20,060	20,073	20,087
1690	20,087	20,100	20,114	20,127	20,141	20,154	20,168	20,181	20,195	20,208	20,222
1700	20,222	20,235	20,249	20,262	20,275	20,289	20,302	20,316	20,329	20,342	20,356
1710	20,356	20,369	20,382	20,396	20,409	20,422	20,436	20,449	20,462	20,475	20,488
1720	20,488	20,502	20,515	20,528	20,541	20,554	20,567	20,581	20,594	20,607	20,620
1730	20,620	20,633	20,646	20,659	20,672	20,685	20,698	20,711	20,724	20,736	20,749
1740	20,749	20,762	20,775	20,788	20,801	20,813	20,826	20,839	20,852	20,864	20,877
1750	20,877	20,890	20,902	20,915	20,928	20,940	20,953	20,965	20,978	20,990	21,003
1760	21,003	21,015	21,027	21,040	21,052	21,065	21,077	21,089	21,101		

11.3.10 PlatinRhodium-Platin (Pt30Rh-Pt6Rh) "B"

`				_			_		_	-	
	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,000	0,000	-0,001	-0,001	-0,001	-0,001	-0,001	-0,002	-0,002	-0,002
10	-0,002	-0,002	-0,002	-0,002	-0,002	-0,002	-0,002	-0,002	-0,003	-0,003	-0,003
20	-0,003	-0,003	-0,003	-0,003	-0,003	-0,002	-0,002	-0,002	-0,002	-0,002	-0,002
30	-0,002	-0,002	-0,002	-0,002	-0,002	-0,001	-0,001	-0,001	-0,001	-0,001	0,000
40	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,001	0,002	0,002	0,002
50	0,002	0,003	0,003	0,003	0,004	0,004	0,004	0,005	0,005	0,006	0,006
60	0,006	0,007	0,007	0,008	0,008	0,009	0,009	0,010	0,010	0,011	0,011
70	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015	0,016	0,017	0,017
80	0,017	0,018	0,019	0,020	0,020	0,021	0,022	0,022	0,023	0,024	0,025
90	0,025	0,026	0,026	0,027	0,028	0,029	0,030	0,031	0,031	0,032	0,033
100	0,033	0,034	0,035	0,036	0,037	0,038	0,039	0,040	0,041	0,042	0,043
110	0,043	0,044	0,045	0,046	0,047	0,048	0,049	0,050	0,051	0,052	0,053
120	0,053	0,055	0,056	0,057	0,058	0,059	0,060	0,062	0,063	0,064	0,065
130	0,065	0,066	0,068	0,069	0,070	0,072	0,073	0,074	0,075	0,077	0,078
140	0,078	0,079	0,081	0,082	0,084	0,085	0,086	0,088	0,089	0,091	0,092
150	0,092	0,094	0,095	0,096	0,098	0,099	0,101	0,102	0,104	0,106	0,107
160	0,107	0,109	0,110	0,112	0,113	0,115	0,117	0,118	0,120	0,122	0,123
170	0,123	0,125	0,127	0,128	0,130	0,132	0,134	0,135	0,137	0,139	0,141
180	0,141	0,142	0,144	0,146	0,148	0,150	0,151	0,153	0,155	0,157	0,159
190	0,159	0,161	0,163	0,165	0,166	0,168	0,170	0,172	0,174	0,176	0,178
200	0,178	0,180	0,182	0,184	0,186	0,188	0,190	0,192	0,195	0,197	0,199
210	0,199	0,201	0,203	0,205	0,207	0,209	0,212	0,214	0,216	0,218	0,220
220	0,220	0,222	0,225	0,227	0,229	0,231	0,234	0,236	0,238	0,241	0,243
230	0,243	0,245	0,248	0,250	0,252	0,255	0,257	0,259	0,262	0,264	0,267
240	0,267	0,269	0,271	0,274	0,276	0,279	0,281	0,284	0,286	0,289	0,291
250	0,291	0,294	0,296	0,299	0,301	0,304	0,307	0,309	0,312	0,314	0,317
260	0,317	0,320	0,322	0,325	0,328	0,330	0,333	0,336	0,338	0,341	0,344
270	0,344	0,347	0,349	0,352	0,355	0,358	0,360	0,363	0,366	0,369	0,372
280	0,372	0,375	0,377	0,380	0,383	0,386	0,389	0,392	0,395	0,398	0,401
290	0,401	0,404	0,407	0,410	0,413	0,416	0,419	0,422	0,425	0,428	0,431
300	0,431	0,434	0,437	0,440	0,443	0,446	0,449	0,452	0,455	0,458	0,462
310	0,462	0,465	0,468	0,471	0,474	0,478	0,481	0,484	0,487	0,490	0,494
320	0,494	0,497	0,500	0,503	0,507	0,510	0,513	0,517	0,520	0,523	0,527
330	0,527	0,530	0,533	0,537	0,540	0,544	0,547	0,550	0,554	0,557	0,561
340	0,561	0,564	0,568	0,571	0,575	0,578	0,582	0,585	0,589	0,592	0,596
350	0,596	0,599	0,603	0,607	0,610	0,614	0,617	0,621	0,625	0,628	0,632
360	0,632	0,636	0,639	0,643	0,647	0,650	0,654	0,658	0,662	0,665	0,669
370	0,669	0,673	0,677	0,680	0,684	0,688	0,692	0,696	0,700	0,703	0,707
380	0,707	0,711	0,715	0,719	0,723	0,727	0,731	0,735	0,738	0,742	0,746
	•							•	•	·	

PlatinRhodium-Platin (Pt30Rh-Pt6Rh) "B"

	0	1	2	3	4	5	6	7	8	9	10
390	0,746	0,750	0,754	0,758	0,762	0,766	0,770	0,774	0,778	0,782	0,787
400	0,787	0,791	0,795	0,799	0,803	0,807	0,811	0,815	0,819	0,823	0,828
410	0,828	0,832	0,836	0,840	0,844	0,849	0,853	0,857	0,861	0,865	0,870
420	0,870	0,874	0,878	0,883	0,887	0,891	0,895	0,900	0,904	0,908	0,913
430	0,913	0,917	0,922	0,926	0,930	0,935	0,939	0,944	0,948	0,952	0,957
440	0,957	0,961	0,966	0,970	0,975	0,979	0,984	0,988	0,993	0,997	1,002
450	1,002	1,007	1,011	1,016	1,020	1,025	1,029	1,034	1,039	1,043	1,048
460	1,048	1,053	1,057	1,062	1,067	1,071	1,076	1,081	1,086	1,090	1,095
470	1,095	1,100	1,105	1,109	1,114	1,119	1,124	1,128	1,133	1,138	1,143
480	1,143	1,148	1,153	1,158	1,162	1,167	1,172	1,177	1,182	1,187	1,192
490	1,192	1,197	1,202	1,207	1,212	1,217	1,222	1,227	1,232	1,237	1,242
500	1,242	1,247	1,252	1,257	1,262	1,267	1,272	1,277	1,282	1,287	1,293
510	1,293	1,298	1,303	1,308	1,313	1,318	1,323	1,329	1,334	1,339	1,344
520	1,344	1,350	1,355	1,360	1,365	1,371	1,376	1,381	1,386	1,392	1,397
530	1,397	1,402	1,408	1,413	1,418	1,424	1,429	1,434	1,440	1,445	1,451
540	1,451	1,456	1,461	1,467	1,472	1,478	1,483	1,489	1,494	1,500	1,505
550	1,505	1,511	1,516	1,522	1,527	1,533	1,538	1,544	1,549	1,555	1,561
560	1,561	1,566	1,572	1,577	1,583	1,589	1,594	1,600	1,606	1,611	1,617
570	1,617	1,623	1,628	1,634	1,640	1,646	1,651	1,657	1,663	1,669	1,674
580	1,674	1,680	1,686	1,692	1,697	1,703	1,709	1,715	1,721	1,727	1,732
590	1,732	1,738	1,744	1,750	1,756	1,762	1,768	1,774	1,780	1,786	1,792
600	1,792	1,797	1,803	1,809	1,815	1,821	1,827	1,833	1,839	1,845	1,852
610	1,852	1,858	1,864	1,870	1,876	1,882	1,888	1,894	1,900	1,906	1,912
620	1,912	1,919	1,925	1,931	1,937	1,943	1,949	1,955	1,962	1,968	1,974
630	1,974	1,981	1,987	1,993	1,999	2,006	2,012	2,018	2,025	2,031	2,037
640	2,037	2,043	2,050	2,056	2,062	2,069	2,075	2,082	2,088	2,094	2,101
650	2,101	2,107	2,113	2,120	2,126	2,133	2,139	2,146	2,152	2,158	2,165
660	2,165	2,171	2,178	2,184	2,191	2,197	2,204	2,210	2,217	2,224	2,230
670	2,230	2,237	2,243	2,250	2,256	2,263	2,270	2,276	2,283	2,289	2,296
680	2,296	2,303	2,309	2,316	2,323	2,329	2,336	2,343	2,350	2,356	2,363
690	2,363	2,370	2,376	2,383	2,390	2,397	2,403	2,410	2,417	2,424	2,431
700	2,431	2,437	2,444	2,451	2,458	2,465	2,472	2,479	2,485	2,492	2,499
710	2,499	2,506	2,513	2,520	2,527	2,534	2,541	2,548	2,555	2,562	2,569
720	2,569	2,576	2,583	2,590	2,597	2,604	2,611	2,618	2,625	2,632	2,639
730	2,639	2,646	2,653	2,660	2,667	2,674	2,681	2,688	2,696	2,703	2,710
740	2,710	2,717	2,724	2,731	2,738	2,746	2,753	2,760	2,767	2,775	2,782
750	2,782	2,789	2,796	2,803	2,811	2,818	2,825	2,833	2,840	2,847	2,854
760	2,854	2,862	2,869	2,876	2,884	2,891	2,898	2,906	2,913	2,921	2,928
770	2,928	2,935	2,943	2,950	2,958	2,965	2,973	2,980	2,987	2,995	3,002

PlatinRhodium-Platin (Pt30Rh-Pt6Rh) "B"

	0	1	2	3	4	5	6	7	8	9	10
780	3,002	3,010	3,017	3,025	3,032	3,040	3,047	3,055	3,062	3,070	3,078
790	3,078	3,085	3,093	3,100	3,108	3,116	3,123	3,131	3,138	3,146	3,154
800	3,154	3,161	3,169	3,177	3,184	3,192	3,200	3,207	3,215	3,223	3,230
810	3,230	3,238	3,246	3,254	3,261	3,269	3,277	3,285	3,292	3,300	3,308
820	3,308	3,316	3,324	3,331	3,339	3,347	3,355	3,363	3,371	3,379	3,386
830	3,386	3,394	3,402	3,410	3,418	3,426	3,434	3,442	3,450	3,458	3,466
840	3,466	3,474	3,482	3,490	3,498	3,506	3,514	3,522	3,530	3,538	3,546
850	3,546	3,554	3,562	3,570	3,578	3,586	3,594	3,602	3,610	3,618	3,626
860	3,626	3,634	3,643	3,651	3,659	3,667	3,675	3,683	3,692	3,700	3,708
870	3,708	3,716	3,724	3,732	3,741	3,749	3,757	3,765	3,774	3,782	3,790
880	3,790	3,798	3,807	3,815	3,823	3,832	3,840	3,848	3,857	3,865	3,873
890	3,873	3,882	3,890	3,898	3,907	3,915	3,923	3,932	3,940	3,949	3,957
900	3,957	3,965	3,974	3,982	3,991	3,999	4,008	4,016	4,024	4,033	4,041
910	4,041	4,050	4,058	4,067	4,075	4,084	4,093	4,101	4,110	4,118	4,127
920	4,127	4,135	4,144	4,152	4,161	4,170	4,178	4,187	4,195	4,204	4,213
930	4,213	4,221	4,230	4,239	4,247	4,256	4,265	4,273	4,282	4,291	4,299
940	4,299	4,308	4,317	4,326	4,334	4,343	4,352	4,360	4,369	4,378	4,387
950	4,387	4,396	4,404	4,413	4,422	4,431	4,440	4,448	4,457	4,466	4,475
960	4,475	4,484	4,493	4,501	4,510	4,519	4,528	4,537	4,546	4,555	4,564
970	4,564	4,573	4,582	4,591	4,599	4,608	4,617	4,626	4,635	4,644	4,653
980	4,653	4,662	4,671	4,680	4,689	4,698	4,707	4,716	4,725	4,734	4,743
990	4,743	4,753	4,762	4,771	4,780	4,789	4,798	4,807	4,816	4,825	4,834
1000	4,834	4,843	4,853	4,862	4,871	4,880	4,889	4,898	4,908	4,917	4,926
1010	4,926	4,935	4,944	4,954	4,963	4,972	4,981	4,990	5,000	5,009	5,018
1020	5,018	5,027	5,037	5,046	5,055	5,065	5,074	5,083	5,092	5,102	5,111
1030	5,111	5,120	5,130	5,139	5,148	5,158	5,167		5,186	5,195	5,205
1040	5,205	5,214		5,233	5,242	5,252	5,261	5,270	5,280	5,289	5,299
1050	5,299	5,308	5,318	5,327	5,337	5,346	5,356		5,375	5,384	5,394
1060	5,394	5,403	5,413	5,422	5,432	5,441	5,451	5,460	5,470	5,480	5,489
1070	5,489	5,499	5,508	5,518	5,528	5,537	5,547	5,556	5,566	5,576	5,585
1080	5,585	5,595	5,605	5,614	5,624	5,634	5,643		5,663	5,672	5,682
1090	5,682	5,692	5,702	5,711	5,721	5,731	5,740		5,760	5,770	5,780
1100	5,780	5,789	5,799	5,809	5,819	5,828	5,838		5,858	5,868	5,878
1110	5,878	5,887	5,897	5,907	5,917	5,927	5,937		5,956	5,966	5,976
1120	5,976	5,986	5,996	6,006	6,016	6,026	6,036		6,055	6,065	6,075
1130	6,075	6,085	6,095	6,105	6,115	6,125	6,135		6,155	6,165	6,175
1140	6,175	6,185	6,195	6,205	6,215	6,225	6,235		6,256	6,266	6,276
1150	6,276	6,286	6,296	6,306	6,316	6,326	6,336		6,356	6,367	6,377
1160	6,377	6,387	6,397	6,407	6,417	6,427	6,438	6,448	6,458	6,468	6,478

PlatinRhodium-Platin (Pt30Rh-Pt6Rh) "B"

	0	1	2	3	4	5	6	7	8	9	10
1170	6,478	6,488	6,499	6,509	6,519	6,529	6,539	6,550	6,560	6,570	6,580
1180	6,580	6,591	6,601	6,611	6,621	6,632	6,642	6,652	6,663	6,673	6,683
1190	6,683	6,693	6,704	6,714	6,724	6,735	6,745	6,755	6,766	6,776	6,786
1200	6,786	6,797	6,807	6,818	6,828	6,838	6,849	6,859	6,869	6,880	6,890
1210	6,890	6,901	6,911	6,922	6,932	6,942	6,953	6,963	6,974	6,984	6,995
1220	6,995	7,005	7,016	7,026	7,037	7,047	7,058	7,068	7,079	7,089	7,100
1230	7,100	7,110	7,121	7,131	7,142	7,152	7,163	7,173	7,184	7,194	7,205
1240	7,205	7,216	7,226	7,237	7,247	7,258	7,269	7,279	7,290	7,300	7,311
1250	7,311	7,322	7,332	7,343	7,353	7,364	7,375	7,385	7,396	7,407	7,417
1260	7,417	7,428	7,439	7,449	7,460	7,471	7,482	7,492	7,503	7,514	7,524
1270	7,524	7,535	7,546	7,557	7,567	7,578	7,589	7,600	7,610	7,621	7,632
1280	7,632	7,643	7,653	7,664	7,675	7,686	7,697	7,707	7,718	7,729	7,740
1290	7,740	7,751	7,761	7,772	7,783	7,794	7,805	7,816	7,827	7,837	7,848
1300	7,848	7,859	7,870	7,881	7,892	7,903	7,914	7,924	7,935	7,946	7,957
1310	7,957	7,968	7,979	7,990	8,001	8,012	8,023	8,034	8,045	8,056	8,066
1320	8,066	8,077	8,088	8,099	8,110	8,121	8,132	8,143	8,154	8,165	8,176
1330	8,176	8,187	8,198	8,209	8,220	8,231	8,242	8,253	8,264	8,275	8,286
1340	8,286	8,298	8,309	8,320	8,331	8,342	8,353	8,364	8,375	8,386	8,397
1350	8,397	8,408	8,419	8,430	8,441	8,453	8,464	8,475	8,486	8,497	8,508
1360	8,508	8,519	8,530	8,542	8,553	8,564	8,575	8,586	8,597	8,608	8,620
1370	8,620	8,631	8,642	8,653	8,664	8,675	8,687	8,698	8,709	8,720	8,731
1380	8,731	8,743	8,754	8,765	8,776	8,787	8,799	8,810	8,821	8,832	8,844
1390	8,844	8,855	8,866	8,877	8,889	8,900	8,911	8,922	8,934	8,945	8,956
1400	8,956	8,967	8,979	8,990	9,001	9,013	9,024	9,035	9,047	9,058	9,069
1410	9,069	9,080	9,092	9,103	9,114	9,126	9,137	9,148	9,160	9,171	9,182
1420	9,182	9,194	9,205	9,216	9,228	9,239	9,251	9,262	9,273	9,285	9,296
1430	9,296	9,307	9,319	9,330	9,342	9,353	9,364	9,376	9,387	9,398	9,410
1440	9,410	9,421	9,433	9,444	9,456	9,467	9,478	9,490	9,501	9,513	9,524
1450	9,524	9,536	9,547	9,558	9,570	9,581	9,593	9,604	9,616	9,627	9,639
1460	9,639	9,650	9,662	9,673	9,684	9,696	9,707	9,719	9,730	9,742	9,753
1470	9,753	9,765	9,776	9,788	9,799	9,811	9,822	9,834	9,845	9,857	9,868
1480	9,868	9,880	9,891	9,903	9,914	9,926	9,937	9,949	9,961	9,972	9,984
1490	9,984	9,995	10,007	10,018	10,030	10,041	10,053	10,064	10,076	10,088	10,099
1500	10,099	10,111	10,122	10,134	10,145	10,157	10,168	10,180	10,192	10,203	10,215
1510	10,215	10,226	10,238	10,249	10,261	10,273	10,284	10,296	10,307	10,319	10,331
1520	10,331	10,342	10,354	10,365	10,377	10,389	10,400	10,412	10,423	10,435	10,447
1530	10,447	10,458	10,470	10,482	10,493	10,505	10,516	10,528	10,540	10,551	10,563
1540	10,563	10,575	10,586	10,598	10,609	10,621	10,633	10,644	10,656	10,668	10,679
1550	10,679	10,691	10,703	10,714	10,726	10,738	10,749	10,761	10,773	10,784	10,796

PlatinRhodium-Platin (Pt30Rh-Pt6Rh) "B"

	0	1	2	3	4	5	6	7	8	9	10
1560	10,796	10,808	10,819	10,831	10,843	10,854	10,866	10,877	10,889	10,901	10,913
1570	10,913	10,924	10,936	10,948	10,959	10,971	10,983	10,994	11,006	11,018	11,029
1580	11,029	11,041	11,053	11,064	11,076	11,088	11,099	11,111	11,123	11,134	11,146
1590	11,146	11,158	11,169	11,181	11,193	11,205	11,216	11,228	11,240	11,251	11,263
1600	11,263	11,275	11,286	11,298	11,310	11,321	11,333	11,345	11,357	11,368	11,380
1610	11,380	11,392	11,403	11,415	11,427	11,438	11,450	11,462	11,474	11,485	11,497
1620	11,497	11,509	11,520	11,532	11,544	11,555	11,567	11,579	11,591	11,602	11,614
1630	11,614	11,626	11,637	11,649	11,661	11,673	11,684	11,696	11,708	11,719	11,731
1640	11,731	11,743	11,754	11,766	11,778	11,790	11,801	11,813	11,825	11,836	11,848
1650	11,848	11,860	11,871	11,883	11,895	11,907	11,918	11,930	11,942	11,953	11,965
1660	11,965	11,977	11,988	12,000	12,012	12,024	12,035	12,047	12,059	12,070	12,082
1670	12,082	12,094	12,105	12,117	12,129	12,141	12,152	12,164	12,176	12,187	12,199
1680	12,199	12,211	12,222	12,234	12,246	12,257	12,269	12,281	12,292	12,304	12,316
1690	12,316	12,327	12,339	12,351	12,363	12,374	12,386	12,398	12,409	12,421	12,433
1700	12,433	12,444	12,456	12,468	12,479	12,491	12,503	12,514	12,526	12,538	12,549
1710	12,549	12,561	12,572	12,584	12,596	12,607	12,619	12,631	12,642	12,654	12,666
1720	12,666	12,677	12,689	12,701	12,712	12,724	12,736	12,747	12,759	12,770	12,782
1730	12,782	12,794	12,805	12,817	12,829	12,840	12,852	12,863	12,875	12,887	12,898
1740	12,898	12,910	12,921	12,933	12,945	12,956	12,968	12,980	12,991	13,003	13,014
1750	13,014	13,026	13,037	13,049	13,061	13,072	13,084	13,095	13,107	13,119	13,130
1760	13,130	13,142	13,153	13,165	13,176	13,188	13,200	13,211	13,223	13,234	13,246
1770	13,246	13,257	13,269	13,280	13,292	13,304	13,315	13,327	13,338	13,350	13,361
1780	13,361	13,373	13,384	13,396	13,407	13,419	13,430	13,442	13,453	13,465	13,476
1790	13,476	13,488	13,499	13,511	13,522	13,534	13,545	13,557	13,568	13,580	13,591
1800	13,591	13,603	13,614	13,626	13,637	13,649	13,660	13,672	13,683	13,694	13,706
1810	13,706	13,717	13,729	13,740	13,752	13,763	13,775	13,786	13,797	13,809	13,820

11.4 Grundwerte für den Pt 100

(Widerstand in Ω)

	0	1	2	3	4	5	6	7	8	9	10
-200	18,520	18,952	19,384	19,815	20,247	20,677	21,108	21,538	21,967	22,397	22,825
-190	22,825	23,254	23,682	24,110	24,538	24,965	25,392	25,819	26,245	26,671	27,096
-180	27,096	27,522	27,947	28,371	28,796	29,220	29,643	30,067	30,490	30,913	31,335
-170	31,335	31,757	32,179	32,601	33,022	33,443	33,864	34,284	34,704	35,124	35,543
-160	35,543	35,963	36,382	36,800	37,219	37,637	38,055	38,472	38,889	39,306	39,723
-150	39,723	40,140	40,556	40,972	41,388	41,803	42,218	42,633	43,048	43,462	43,876
-140	43,876	44,290	44,704	45,117	45,531	45,944	46,356	46,769	47,181	47,593	48,005
-130	48,005	48,416	48,828	49,239	49,649	50,060	50,470	50,881	51,291	51,700	52,110
-120	52,110	52,519	52,928	53,337	53,746	54,154	54,562	54,970	55,378	55,786	56,193
-110	56,193	56,600	57,007	57,414	57,821	58,227	58,633	59,039	59,445	59,850	60,256
-100	60,256	60,661	61,066	61,471	61,876	62,280	62,684	63,088	63,492	63,896	64,300
-90	64,300	64,703	65,106	65,509	65,912	66,315	66,717	67,120	67,522	67,924	68,325
-80	68,325	68,727	69,129	69,530	69,931	70,332	70,733	71,134	71,534	71,934	72,335
-70	72,335	72,735	73,134	73,534	73,934	74,333	74,732	75,131	75,530	75,929	76,328
-60	76,328	76,726	77,125	77,523	77,921	78,319	78,717	79,114	79,512	79,909	80,306
-50	80,306	80,703	81,100	81,497	81,894	82,290	82,687	83,083	83,479	83,875	84,271
-40	84,271	84,666	85,062	85,457	85,853	86,248	86,643	87,038	87,432	87,827	88,222
-30	88,222	88,616	89,010	89,404	89,798	90,192	90,586	90,980	91,373	91,767	92,160
-20	92,160	92,553	92,946	93,339	93,732	94,124	94,517	94,909	95,302	95,694	96,086
-10	96,086	96,478	96,870	97,261	97,653	98,044	98,436	98,827	99,218	99,609	100,000
0	100,000	100,391	100,781	101,172	101,562	101,953	102,343	102,733	103,123	103,513	103,903
10	103,903	104,292	104,682	105,071	105,460	105,849	106,238	106,627	107,016	107,405	107,794
20	107,794	108,182	108,570	108,959	109,347	109,735	110,123	110,510	110,898	111,286	111,673
30	111,673	112,060	112,447	112,835	113,221	113,608	113,995	114,382	114,768	115,155	115,541
40	115,541	115,927	116,313	116,699	117,085	117,470	117,856	118,241	118,627	119,012	119,397
50	119,397	119,782	120,167	120,552	120,936	121,321	121,705	122,090	122,474	122,858	123,242
60	123,242	123,626	124,009	124,393	124,777	125,160	125,543	125,926	126,309	126,692	127,075
70	127,075	127,458	127,840	128,223	128,605	128,987	129,370	129,752	130,133	130,515	130,897
80	130,897	131,278	131,660	132,041	132,422	132,803	133,184	133,565	133,946	134,326	134,707
90	134,707	135,087	135,468	135,848	136,228	136,608	136,987	137,367	137,747	138,126	138,506
100	138,506	138,885	139,264	139,643	140,022	140,400	140,779	141,158	141,536	141,914	142,293
110	142,293	142,671	143,049	143,426	143,804	144,182	144,559	144,937	145,314	145,691	146,068
120	146,068	146,445	146,822	147,198	147,575	147,951	148,328	148,704	149,080	149,456	149,832
130	149,832	150,208	150,583	150,959	151,334	151,710	152,085	152,460	152,835	153,210	153,584
140	153,584	153,959	154,333	154,708	155,082	155,456	155,830	156,204	156,578	156,952	157,325
150	157,325	157,699	158,072	158,445	158,818	159,191	159,564	159,937	160,309	160,682	161,054
160	161,054	161,427	161,799	162,171	162,543	162,915	163,286	163,658	164,030	164,401	164,772
170	164,772	165,143	165,514	165,885	166,256	166,627	166,997	167,368	167,738	168,108	168,478
180	168,478	168,848	169,218	169,588	169,958	170,327	170,696	171,066	171,435	171,804	172,173

Grundwerte für den Pt 100

(Widerstand in Ω)

	0	1	2	3	4	5	6	7	8	9	10
190	172,173	172,542	172,910	173,279	173,648	174,016	174,384	174,752	175,120	175,488	175,856
200	175,856	176,224	176,591	176,959	177,326	177,693	178,060	178,427	178,794	179,161	179,528
210	179,528	179,894	180,260	180,627	180,993	181,359	181,725	182,091	182,456	182,822	183,188
220	183,188	183,553	183,918	184,283	184,648	185,013	185,378	185,743	186,107	186,472	186,836
230	186,836	187,200	187,564	187,928	188,292	188,656	189,019	189,383	189,746	190,110	190,473
240	190,473	190,836	191,199	191,562	191,924	192,287	192,649	193,012	193,374	193,736	194,098
250	194,098	194,460	194,822	195,183	195,545	195,906	196,268	196,629	196,990	197,351	197,712
260	197,712	198,073	198,433	198,794	199,154	199,514	199,875	200,235	200,595	200,954	201,314
270	201,314	201,674	202,033	202,393	202,752	203,111	203,470	203,829	204,188	204,546	204,905
280	204,905	205,263	205,622	205,980	206,338	206,696	207,054	207,411	207,769	208,127	208,484
290	208,484	208,841	209,198	209,555	209,912	210,269	210,626	210,982	211,339	211,695	212,052
300	212,052	212,408	212,764	213,120	213,475	213,831	214,187	214,542	214,897	215,252	215,608
310	215,608	215,962	216,317	216,672	217,027	217,381	217,736	218,090	218,444	218,798	219,152
320	219,152	219,506	219,860	220,213	220,567	220,920	221,273	221,626	221,979	222,332	222,685
330	222,685	223,038	223,390	223,743	224,095	224,447	224,799	225,151	225,503	225,855	226,206
340	226,206	226,558	226,909	227,260	227,612	227,963	228,314	228,664	229,015	229,366	229,716
350	229,716	230,066	230,417	230,767	231,117	231,467	231,816	232,166	232,516	232,865	233,214
360	233,214	233,564	233,913	234,262	234,610	234,959	235,308	235,656	236,005	236,353	236,701
370	236,701	237,049	237,397	237,745	238,093	238,440	238,788	239,135	239,482	239,829	240,176
380	240,176	240,523	240,870	241,217	241,563	241,910	242,256	242,602	242,948	243,294	243,640
390	243,640	243,986	244,331	244,677	245,022	245,367	245,713	246,058	246,403	246,747	247,092
400	247,092	247,437	247,781	248,125	248,470	248,814	249,158	249,502	249,845	250,189	250,533
410	250,533	250,876	251,219	251,562	251,906	252,248	252,591	252,934	253,277	253,619	253,962
420	253,962	254,304	254,646	254,988	255,330	255,672	256,013	256,355	256,696	257,038	257,379
430	257,379	257,720	258,061	258,402	258,743	259,083	259,424	259,764	260,105	260,445	260,785
440	260,785	261,125	261,465	261,804	262,144	262,483	262,823	263,162	263,501	263,840	264,179
450	264,179	264,518	264,857	265,195	265,534	265,872	266,210	266,548	266,886	267,224	267,562
460	267,562	267,900	268,237	268,574	268,912	269,249	269,586	269,923	270,260	270,597	270,933
470	270,933	271,270	271,606	271,942	272,278	272,614	272,950	273,286	273,622	273,957	274,293
480	274,293	274,628	274,963	275,298	275,633	275,968	276,303	276,638	276,972	277,307	277,641
490	277,641	277,975	278,309	278,643	278,977	279,311	279,644	279,978	280,311	280,644	280,978
500	280,978	281,311	281,643	281,976	282,309	282,641	282,974	283,306	283,638	283,971	284,303
510	284,303	284,634	284,966	285,298	285,629	285,961	286,292	286,623	286,954	287,285	287,616
520	287,616	287,947	288,277	288,608	288,938	289,268	289,599	289,929	290,258	290,588	290,918
530	290,918	291,247	291,577	291,906	292,235	292,565	292,894	293,222	293,551	293,880	294,208
540	294,208	294,537	294,865	295,193	295,521	295,849	296,177	296,505	296,832	297,160	297,487
550	297,487	297,814	298,142	298,469	298,795	299,122	299,449	299,775	300,102	300,428	300,754
560	300,754	301,080	301,406	301,732	302,058	302,384	302,709	303,035	303,360	303,685	304,010
570	304,010	304,335	304,660	304,985	305,309	305,634	305,958	306,282	306,606	306,930	307,254

Grundwerte für den Pt 100

(Widerstand in Ω)

	0	1	2	3	4	5	6	7	8	9	10
580	307,254	307,578	307,902	308,225	308,549	308,872	309,195	309,518	309,841	310,164	310,487
590	310,487	310,810	311,132	311,454	311,777	312,099	312,421	312,743	313,065	313,386	313,708
600	313,708	314,029	314,351	314,672	314,993	315,314	315,635	315,956	316,277	316,597	316,918
610	316,918	317,238	317,558	317,878	318,198	318,518	318,838	319,157	319,477	319,796	320,116
620	320,116	320,435	320,754	321,073	321,391	321,710	322,029	322,347	322,666	322,984	323,302
630	323,302	323,620	323,938	324,256	324,573	324,891	325,208	325,526	325,843	326,160	326,477
640	326,477	326,794	327,110	327,427	327,744	328,060	328,376	328,692	329,008	329,324	329,640
650	329,640	329,956	330,271	330,587	330,902	331,217	331,533	331,848	332,162	332,477	332,792
660	332,792	333,106	333,421	333,735	334,049	334,363	334,677	334,991	335,305	335,619	335,932
670	335,932	336,246	336,559	336,872	337,185	337,498	337,811	338,123	338,436	338,748	339,061
680	339,061	339,373	339,685	339,997	340,309	340,621	340,932	341,244	341,555	341,867	342,178
690	342,178	342,489	342,800	343,111	343,422	343,732	344,043	344,353	344,663	344,973	345,284
700	345,284	345,593	345,903	346,213	346,522	346,832	347,141	347,451	347,760	348,069	348,378
710	348,378	348,686	348,995	349,303	349,612	349,920	350,228	350,536	350,844	351,152	351,460
720	351,460	351,768	352,075	352,382	352,690	352,997	353,304	353,611	353,918	354,224	354,531
730	354,531	354,837	355,144	355,450	355,756	356,062	356,368	356,674	356,979	357,285	357,590
740	357,590	357,896	358,201	358,506	358,811	359,116	359,420	359,725	360,029	360,334	360,638
750	360,638	360,942	361,246	361,550	361,854	362,158	362,461	362,765	363,068	363,371	363,674
760	363,674	363,977	364,280	364,583	364,886	365,188	365,491	365,793	366,095	366,397	366,699
770	366,699	367,001	367,303	367,604	367,906	368,207	368,508	368,810	369,111	369,412	369,712
780	369,712	370,013	370,314	370,614	370,914	371,215	371,515	371,815	372,115	372,414	372,714
790	372,714	373,013	373,313	373,612	373,911	374,210	374,509	374,808	375,107	375,406	375,704
800	375,704	376,002	376,301	376,599	376,897	377,195	377,493	377,790	378,088	378,385	378,683
810	378,683	378,980	379,277	379,574	379,871	380,167	380,464	380,761	381,057	381,353	381,650
820	381,650	381,946	382,242	382,537	382,833	383,129	383,424	383,720	384,015	384,310	384,605
830	384,605	384,900	385,195	385,489	385,784	386,078	386,373	386,667	386,961	387,255	387,549
840	387,549	387,843	388,136	388,430	388,723	389,016	389,310	389,603	389,896	390,188	390,481
850	390,481	390,774	391,066	391,359	391,651	391,943	392,235	392,527	392,819	393,110	393,402

JUMO, FAS 146, Ausgabe 2007-01 153

11.5 Grundwerte für den Ni 100

(Widerstand in Ω)

	0	1	2	3	4	5	6	7	8	9	10
-60	69,520	69,987	70,456	70,926	71,397	71,870	72,344	72,820	73,297	73,775	74,255
-50	74,255	74,736	75,219	75,703	76,189	76,676	77,164	77,654	78,145	78,637	79,131
-40	79,131	79,626	80,123	80,621	81,121	81,621	82,123	82,627	83,132	83,638	84,146
-30	84,146	84,655	85,165	85,677	86,190	86,704	87,220	87,737	88,256	88,775	89,296
-20	89,296	89,819	90,343	90,868	91,394	91,922	92,451	92,982	93,514	94,047	94,582
-10	94,582	95,117	95,655	96,193	96,733	97,274	97,817	98,360	98,906	99,452	100,000
0	100,000	100,549	101,100	101,651	102,205	102,759	103,315	103,872	104,431	104,990	105,552
10	105,552	106,114	106,678	107,243	107,809	108,377	108,946	109,517	110,089	110,662	111,236
20	111,236	111,812	112,390	112,968	113,548	114,129	114,712	115,296	115,881	116,468	117,056
30	117,056	117,645	118,236	118,828	119,421	120,016	120,613	121,210	121,809	122,409	123,011
40	123,011	123,614	124,219	124,825	125,432	126,041	126,651	127,262	127,875	128,489	129,105
50	129,105	129,722	130,341	130,961	131,582	132,205	132,829	133,455	134,082	134,710	135,340
60	135,340	135,972	136,605	137,239	137,875	138,512	139,151	139,791	140,433	141,076	141,721
70	141,721	142,367	143,015	143,664	144,315	144,967	145,621	146,276	146,933	147,592	148,251
80	148,251	148,913	149,576	150,240	150,907	151,574	152,244	152,914	153,587	154,261	154,937
90	154,937	155,614	156,293	156,973	157,655	158,339	159,024	159,711	160,400	161,090	161,783
100	161,783	162,476	163,172	163,869	164,567	165,268	165,970	166,674	167,379	168,087	168,796
110	168,796	169,507	170,219	170,933	171,649	172,367	173,087	173,808	174,532	175,257	175,984
120	175,984	176,712	177,443	178,175	178,909	179,646	180,384	181,123	181,865	182,609	183,354
130	183,354	184,102	184,851	185,602	186,356	187,111	187,868	188,627	189,388	190,151	190,917
140	190,917	191,684	192,453	193,224	193,997	194,773	195,550	196,329	197,111	197,895	198,680
150	198,680	199,468	200,258	201,050	201,844	202,641	203,440	204,240	205,043	205,848	206,656
160	206,656	207,465	208,277	209,091	209,908	210,727	211,548	212,371	213,196	214,024	214,855
170	214,855	215,687	216,522	217,359	218,199	219,041	219,886	220,733	221,582	222,434	223,289
180	223,289	224,145	225,005	225,867	226,731	227,598	228,467	229,339	230,214	231,091	231,971
190	231,971	232,854	233,739	234,626	235,517	236,410	237,306	238,204	239,105	240,009	240,916
200	240,916	241,825	242,738	243,653	244,571	245,491	246,415	247,342	248,271	249,203	250,138
210	250,138	251,076	252,017	252,961	253,908	254,858	255,811	256,767	257,726	258,688	259,654
220	259,654	260,622	261,593	262,568	263,546	264,527	265,511	266,498	267,488	268,482	269,479
230	269,479	270,479	271,483	272,490	273,500	274,514	275,531	276,551	277,575	278,602	279,633
240	279,633	280,667	281,704	282,745	283,790	284,838	285,890	286,945	288,004	289,067	290,133
250	290,133										

12 Normen und Literatur

12.1 Normen

EN 50112	Messen, Steuern, Regeln - Elektrishce Temperaturaufnehmer - Metallschutzrohre
EN 50212	Steckverbindungen für Thermoelemente
EN 60584-1	Thermopaare - Teil1 : Grundwerte für Thermospannungen
EN 60584-2	Thermopaare - Teil 2: Grenzabweichungen der Thernospannungen
EN 60751	Industrielle Platin-Widerstandsthermometer und Platin-Messwiderstände
EN 61515	Mantelthermoelement-Leitungen und Mantelthermoelemente mit unedlen Thermopaaren
DIN 1345	Thermodynamik; Formelzeichen, Einheiten
DIN 13402	Medizinische Elektrothermometer; Begriffe, Anforderungen, Prüfungen
DIN 16160	Thermometer, Begriffe für elektrische Thermometer
DIN 16179	Einschraubstutzen und Schutzrohre für Maschinen-Glasthermometer (ungültig, durch DIN 43772 ersetzt)
DIN 28147	Thermometerrohre aus Stahl, für Rührbehälter; Einbaumaße
DIN 28149	Schutzrohre für Temperaturfühler für Rührbehälter; Anschlussmaße
DIN 43710	Grundwerte der Thermospannungen für Thermopaare Typ U und L (ungültig)
DIN 43712	Drähte für Thermopaare (ungültig)
DIN 43714	Ausgleichsleitungen für Thermoleitungen und Thermoelemente (ungültig)
DIN 43720	Metallschutzrohre für Thermoelemente
DIN 43721	Mantelthermoelementleitungen und Mantelthermoelemente
DIN 43724	Keramische Schutzrohre und Halteringe für Thermoelemente
DIN 43725	Isolierrohre für Thermopaare
DIN 43729	Anschlussköpfe für Thermoelemente und Widerstandsthermometer
DIN 43732	Thermopaare für Thermoelemente
DIN 43733	Gerade Thermoelemente ohne auswechselbaren Messeinsatz
DIN 43734	Anschlagflansche für Thermoelemente und Widerstandsthermometer
DIN 43735	Messeinsätze für Thermoelemente
DIN 43760	Grundwerte der Nickel- und Platin-Messwiderstände für Widerstandsthermometer
DIN 43762	Messeinsätze für Widerstandsthermometer
DIN 43763	Metallschutzrohre für Thermometer mit Messeinsatz (ungültig, durch DIN 43772 ersetzt)
DIN 43764	Thermometer ohne Befestigung mit auswechselbarem Messeinsatz
DIN 43765	Einschraub-Thermometer mit Einschraubgewinde G 1/2
DIN 43766	Einschraub-Thermometer mit Einschraubgewinde G 1
DIN 43767	Einschweiß-Thermometer
DIN 43769	Thermometer ohne zusätzliches Schutzrohr
DIN 43770	Übersicht über gerade Thermoelemente und Widerstandsthermometer
VDE/VDI 3511	Technische Temperaturmessung
VDE/VDI 3522	Das Zeitverhalten von Berührungsthermometern

JUMO, FAS 146, Ausgabe 2007-01 155

12 Normen und Literatur

12.2 Literatur

- [1] L. Körtvelessy, Thermoelement Praxis; Essen 1981
- [2] F. Lieneweg, Handbuch der technischen Temperaturmessung; Braunschweig 1976
- [3] C. Gerthsen, Physik; Berlin 1982
- [4] K. Sauer, Probleme der Temperaturmessung, JUMO Information 4/82
- [5] L. Körtvelessy, Elektronenbewegung in einem Thermoelement; Labor Praxis July/August 1981, pp. 568 - 572
- [6] Halar, eine einmalige Kombination von Eigenschaften, Publication by M.K. Juchheim, Fulda 12/90
- [7] J. Jensen, Höhere Präzision bei Heißleitern; Elektronik 9/24 1988, pp. 123 124
- [8] G. Schmidt, Methoden der hochgenauen Thermospannungsmessung; Elektronik-Entwicklung 11/88, pp. 28 30
- [9] C. Liebelt, Simulation von Thermoelementen; cav Elektronik, 7/89, pp. 61 62
- [10] H. Jacqus, Platin- und Iridium-Dünnschichtmesswiderstände; Elektronik 9/29, pp. 126 131
- [11] M. Nau, Wärmeableitfehler bei Temperaturfühlern durch kontinuierliche Verbesserungen minimieren, JUMO Publication 1990
- [12] M. Nau, Lithographie Eine neue Technik zur Strukturierung von Platinsensoren; Sensor Report 1 /1990, p. 15 ff
- [13] M. Nau, Lithographie Ein geeignetes Werkzeug zum Strukturieren von Platinsensoren; EPP February 1990
- [14] D. Weber, Metallkeramischer Hitzeschild Temperaturmessung in Schmelzen; KEM 1988,6/88, pp. 67 68
- [15] D. Weber, Bausteine für die Temperatur Methoden zur industriellen Temperaturmessung; Elektronik Journal/Messtechnik 2/89, pp. 52 58
- [16] DIN 16160, Beuth-Verlag, Berlin
- [17] L. Grovini et al., Calibration of Industrial-Type Platinum Resistance Thermometers; CNR-Instituto di Metrologia, Torino
- [18] R. E. Bentley, The case for MIMS thermocouples: A comparision with the bare-wire alternatives;

 Process and Control Engineering 39 (3), 36 44
- [19] Incotherm Thermoelectric Products; Brochure from Incotherm Limited, 1991
- [20] F. Anderson, N. Burley, The thermoelectric instability of some metal-sheathed mineral-insulated standard thermocouples; Information from Incotherm Limited, 1991
- [21] Halar Beschichtungen, Brochure by R. Gutbrod, Dettlingen, 1989
- [22] Haldenwanger Keramik im Ofenbau, Brochure by W. Haldenwanger, Berlin
- [23] DIN 1345, Beuth-Verlag, Berlin
- [24] L. Weichert, Temperaturmessung in der Technik; Expert-Verlag, 1987

Α

Aluminiumoxid 85
Anschlusskopf 74
Ansprechzeit 62
Armaturen und Schutzrohre 73
Ausgleichsleitung 21, 24, 34
Grenzabweichungen 34

В

Berylliumoxid 85 Boyle-Mariotte 12

C

Celsius 12 Cermotherm 86

D

DKD 70 Drahtdurchmesser 31 Dreileiter 51, 110 Dünnschichtsensoren 55

Ε

Eichung 71
Eigenerwärmung 59, 107
Eigenerwärmungsfehler 112
Eigensicherheit 93
Einstelldauer 63
Eintauchtiefe 65, 78
Eisen-Konstantan 23
Emaille 83
Endogas 82
Explosionsgeschützte Betriebsmittel 91

F

Fühlerkurzschluss 22

Fahrenheit 12
Farbcodes
für Thermopaare und Ausgleichsleitungen 24
Farbkennzeichnung 35
Fixpunkte 12, 15
Folienfühler 55
Fühlerbruch 22

G

Galilei 11 galvanische Trennung 38 Gasthermometer 13 Gauß'sche Normalverteilung 112 Gay-Lussac 12 Glaswiderstand 54, 61

Н

Halar 84 Halbwertzeit 107 Heißleiter 7 Hostaflon 84 Hysterese 57

I

IEC 584 23, 34 Inconel 82 Innenleitung 52 Interpolation 46 IPTS 15–16 ITS 15–16

J

Justierung 69

K

Kalibrierung 69 Kelvin 11, 14 KER 610 85 KER 710 85 Klemmentemperatur 20–21 Körtvelessy 40 Kupfer-Konstantan 23

Langzeitstabilität 7, 57 Leitungswiderstand 109 Lieneweg 81 Literatur 156

Index

M	Schutzrohrlängen 76 Seebeck 17			
Mantelthermoelemente 39	Sensor 73			
Messeinsatz 58	Siliziumkarbid 86			
Messstelle 7, 19	Spannungsreihe 25			
Messunsicherheit 99	Stahlsorten 115			
Messwiderstand 73	Stefan-Boltzmannsches-Strahlungsgesetz 9			
Molybdän-Rhenium-Element 29	Strahlungsgesetz nach			
	Planck 9			
NI .	Stefan Boltzmann 9			
N				
Nachlaufabweichung 61	Т			
Nennwert 43–44	•			
Nennwiderstand 44	Tauchhülsen <i>74</i>			
Neunzehntelzeit 63	Temperaturaufnehmer 73			
Newton 46	Temperaturbegriff 11			
Nickelchrom-Konstantan 23	Temperaturkoeffizient 43			
Nickelchrom-Nickel 23	Temperaturmessung 7			
Nickelmesswiderstand 49	berührend 7			
Nicrosil 23	berührungslos 8			
Normen 155	Temperaturskala 11			
NTC 7	historisch 11			
	nach ITS-90 <i>15</i>			
Р	Temperaturumrechnung in			
Γ	Celsius 116			
Planck'sches Strahlungsgesetz 9	Fahrenheit 116			
Platinmesswiderstand 43	Kelvin 116			
Grenzabweichungen 47	Réaumur 117			
Toleranzklassen 48	Thermoelektrischer Effekt 17			
Platinrhodium-Platin 23	Thermoelemente 17, 23			
Platinwiderstände 43	Anschluss 36			
Polarität 21, 42	Auswahlkriterien 31			
PTB 15, 70	genormt 23			
PTC <i>43</i>	Grenzabweichungen 26			
Pyrometer 7	nach DIN 25			
pyrometer 9	Spannungsreihe 118			
Pythagoras 85	Thermoleitung 34			
, ,g	Thermometer			
_	kalibrierfähig 71			
R	nach DIN 75			
Doughagamagung 92	Thermometerwiderstand 52			
Rauchgasmessung 83	Thermopaar 19, 24			
Referenzbedingungen 69	Thermoschenkel 19			
	Thermoskop 11			
S	Thermospannung 21			
	Thomson 14			
Schmelzen 83, 88	Toleranzklassen 26			
Schutzrohre 73	erweiterte 48			
Einsatzbedingungen 87	für Ausgleichsleitungen 34			
keramisch 77	für Ni 100 <i>4</i> 9			
metallisch 81	für Pt 100 <i>47</i>			
nach DIN 76	Trinelnunkt 14			

U

Übergangsfunktion 61

V

Vergleichsstelle 19
extern 21
interne 21
Vergleichsstellentemperatur 21
Vergleichsstellenthermostat 21
Vierleiterschaltung 110
Vierleitertechnik 51

W

Wärmeableitfehler 65, 112 Wema-Kor 84 Widerstandsthermometer 43 Wolfram-Rhenium-Element 29

Z

Zitierte Normen
DIN 43710 23, 31
DIN 43714 35
Zündschutzarten 93
Zweileiter 50
Zweileiter-Messumformer 52

Index

Fachliteratur von JUMO - Lehrreiches für Einsteiger und Praktiker

Nicht nur bei der Herstellung von JUMO-Produkten, auch beim späteren Einsatz ist Know-How gefragt. Deshalb bieten wir unseren Anwendern eigene Publikationen zu Themen der Mess- und Regelungstechnik

Die Publikationen sollen Einsteigern und Praktikern die unterschiedlichsten Anwendungsgebiete schrittweise näher bringen. Hierbei werden überwiegend allgemeine Themenbereiche, zum Teil auch JUMO-spezifische Anwendungen, erläutert.

Zusätzlich zur JUMO-Fachliteratur, bieten wir Ihnen neben unseren Software-Downloads die Möglichkeit der direkten Online-Bestellung von Prospekten und CD-ROM-Katalogen.

Elektrische Temperaturmessung mit Thermoelementen und Widerstandsthermometern Matthias Nau

FAS 146

Verkaufs-Artikel-Nr.: 00074750 ISBN: 978-3-935742-06-1 zum Preis von 14,- EUR netto

Regelungstechnik für den Praktiker

Manfred Schleicher

Verkaufs-Artikel-Nr.: 00314836 ISBN: 978-3-935742-00-9

zum Preis von 14,- EUR netto

Explosionsschutz in Europa Elektrische Betriebsmittel Grundlagen, Richtlinien, Normen Jürgen Kuhlmei

FAS 547 Verkaufs-Artikel-Nr.: 00324966 ISBN: 978-3-935742-08-5 zum Preis von 9,- EUR netto

Digitale Schnittstellen u. Bussysteme Grundlagen und praktische Hinweise zur Anbindung von Feldgeräten

Manfred Schleicher

FAS 603 Verkaufs-Artikel-Nr.: 00339287 ISBN: 978-3-935742-02-3 zum Preis von 9,- EUR netto

Informationen zur Reinstwassermessung

Reinhard Manns, Dr. Jürgen Schleicher

FAS 614

Verkaufs-Artikel-Nr.: 00369643

kostenfrei

Informationen zur Redoxspannungsmessung

Matthias Kremer, Ulrich Braun, Dr. Jürgen Schleicher

FAS 615

Verkaufs-Artikel-Nr.: 00373848

kostenfrei

Informationen zur amperometrischen Messung von freiem Chlor, Chlordioxid und Ozon in Wasser

Dr. Jürgen Schleicher

FAS 619

Verkaufs-Artikel-Nr.: 00394969

kostenfrei

Elektronische Leistungssteller von JUMO

Grundlagen und Tipps für den Praktiker Manfred Schleicher, Winfried Schneider

FAS 620

Verkaufs-Artikel-Nr.: 00398728 ISBN: 978-3-935742-04-7 zum Preis von 9,- EUR netto

Informationen zur pH-Messung

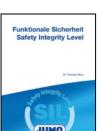
Dr. Jürgen Schleicher

Verkaufs-Artikel-Nr.: 00403231

kostenfrei

Informationen zur Leitfähigkeitsmessung

Reinhard Manns, Dr. Jürgen Schleicher


Verkaufs-Artikel-Nr.: 00411335 kostenfrei

Fachliteratur von JUMO - Lehrreiches für Einsteiger und Praktiker

Messunsicherheit einer Temperaturmesskette mit Beispielrechnungen Gerd Scheller

FAS 625 Verkaufs-Artikel-Nr.: 00413510 ISBN: 978-3-935742-12-2 zum Preis von 3,- EUR netto

Funktionale Sicherheit SIL

Dr. Thomas Reus

FAS 630 Verkaufs-Artikel-Nr.: 00463374 kostenfrei

Informationen zur Messung von Wasserstoffperoxid/ Peressigsäure

Dr. Jürgen Schleicher

FAS 628

Verkaufs-Artikel-Nr.: 00420695 kostenfrei

Informationen zur Ammoniakmessung in Wasser

Dr. Jürgen Schleicher

FAS 631

Verkaufs-Artikel-Nr.: 00481786 kostenfrei

Analysenmesstechnik in flüssigen Medien Ein Handbuch für Praktiker

Dr. Jan Bösche, Dr. Öznur Brandt, Ulrich Braun, Matthias Kremer, Reinhard Manns, Dr. Jürgen Schleicher

FAS 637

Verkaufs-Artikel-Nr.: 00526103 ISBN: 978-3-935742-16-0 zum Preis von 19,- EUR netto

Besuchen Sie unsere deutsche Website auf **www.jumo.de** (für Österreich www.jumo.at, für die Schweiz www.jumo.ch) und überzeugen Sie sich von der umfangreichen Produktpalette für die verschiedensten Einsatzgebiete. Dort finden Sie weitere Informationen und die dazugehörigen Ansprechpartner für Ihre Wünsche, Fragen, Anregungen und Bestellungen.

Kataloge auf CD-ROM

Unsere Kataloge sind - außer in gedruckter Version - auch in digitaler Form erhältlich. Die CD-ROM mit deutschen oder englischen Daten enthalten strukturierte Kataloge im PDF-Format, das Produktspektrum, die International Locations sowie den kostenlosen Download des Acrobat Readers.

JUMO Produkte + Preise

deutsche Ausgabe Verkaufs-Artikel-Nr.: 00397668 kostenfrei

JUMO Products

englische Ausgabe Verkaufs-Artikel-Nr.: 00404116 kostenfrei

